Mestrado em Psicologia da Saúde e Neuropsicologia

O *Test des Neuf Images 93*: estudo preliminar de validade e dados normativos numa amostra portuguesa de idosos analfabetos e com baixo nível de escolaridade

(The *Test des Neuf Images 93*: preliminary study of validity and normative data in a Portuguese sample of illiterate and low educated elderly)

Marta Sofia Barbosa Couto

2018

Instituto Universitário de Ciências da Saúde

Mestrado em Psicologia da Saúde e Neuropsicologia
Declaração de Integridade

Marta Sofia Barbosa Couto, estudante do Mestrado de Psicologia da Saúde e Neuropsicologia do Instituto Universitário de Ciências da Saúde, declaro ter atuado com absoluta integridade na elaboração desta Dissertação.

Confirme que em todo o trabalho condenente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um individuo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele).

Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciados ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.
Agradecimentos

Ao olhar para trás vejo como esta caminhada foi longa, mas que jamais teria sido possível sem todos aqueles que percorreram este percurso a par e passo comigo.

Para que injustamente não me esqueça de ninguém, desde já agradeço a todos eles que passaram ou que estão na minha vida e contribuíram para tudo o que hoje sou e para o que ainda serei um dia.

Não posso deixar de começar por agradecer à minha família, visto que sem eles não teria sido possível realizar este trabalho. Obrigada por tudo, obrigada pelo apoio incondicional e indispensável para o sucesso do meu percurso a nível académico.

Aos meus pais um grande obrigado por todo o apoio, o esforço, a paciência, o carinho e motivação que sempre me proporcionaram para concluir esta etapa.

Ao meu Joãozinho, um obrigado ainda mais especial, se existe alguém que batalhou comigo em todos os momentos foste tu, e sem a tua força eu não teria chegado até aqui.

Ao meu namorado, um grande obrigado por toda a paciência, pelo entusiasmo, pela força, por toda a ajuda, por todo o companheirismo e dedicação ao longo deste percurso.

Ao Professor Doutor José Carlos Caldas, que com toda a sua sabedoria e experiência profissional, me transmitem os valores e competência necessários para um melhor futuro profissional.

Às minhas amigas, pela ajuda, pela compaixão, pela perseverança, pelos conselhos, pelas conversas.

A todos, um muito obrigada!
Resumo

Objetivo: Um dos desafios da avaliação neuropsicológica para o rastreio da deterioração cognitiva / comprometimento cognitivo leve / demência em pessoas com idade ≥ 60 anos com iliteracia, iliteracia funcional ou baixo nível de escolaridade deve-se a criação e uso de testes adequados. O presente estudo, baseia-se numa amostra de portugueses idosos, que teve como objetivo avaliar as características da validade convergente e divergente e estabelecer os dados normativos preliminares para a versão em português do Test des Neuf Images 93 (TNI-93), um teste de memória episódica não-verbal em imagens.

Método: Amostra em “bola de neve” (Snowball) de 115 idosos (≥ 60 anos), sem queixas mnésicas e autónomos nas atividades de vida diária foram avaliados com as versões Portuguesas do TNI-93, Addenbrook's Examination III (ACE III) e Escala de Depressão Geriátrica (GDS).

Resultados: As correlações entre o TNI-93 e as pontuações totais e as subtotais do ACE-III foram significativas, embora moderadas, enquanto que, a correlação entre TNI-93 e a GDS, apesar de negativa, mostrou-se baixa e não significativa.

Apenas a faixa etária correlacionava com a pontuação do TNI-93, com diferenças significativas entre os grupos com idades compreendidas entre 60-70 e ≥ 81 anos. A análise de regressão múltipla comprovou que a idade é o principal preditor da pontuação total no TNI-93.

Conclusões: Os nossos resultados mostram valores moderados de validade convergente e a interferência da idade mas não do género ou do nível de escolaridade nos resultados do TNI-93.

Desenvolveram-se dados normativos preliminares, assim como uma fórmula para calcular os resultados esperados e a pontuação z. O TNI-93 mostra-se um instrumento promissor de rastreio breve para a deteção de deterioração cognitiva/defeito cognitivo ligeiro/demência em pessoas com idade ≥ 60 anos com iliteracia, iliteracia funcional ou baixo nível de escolaridade.
Abstract

Objective: One of the challenges to neuropsychological assessment for screening of cognitive deterioration/mild cognitive defect/dementia in people aged ≥ 60 years with illiteracy, functional illiteracy or low level of schooling refers to the appropriateness of the tests used. The present study, based on a sample of Portuguese elderly, aimed to evaluate the characteristics of convergent and divergent validity and to establish preliminary normative data for the Portuguese version of the Test des Neuf Images 93 (TNI-93), a non-verbal episodic memory test in images.

Method: A snowball sample of 115 older adults (≥ 60 years), without mnesic complaints and autonomous in daily living activities were assessed with the Portuguese versions of TNI-93, Addenbrook's Examination III (ACE III) and Geriatric Depression Scale (GDS).

Results: Correlations between TNI-93 and ACE-III total score and subscores were significant, though moderate. Correlation between TNI-93 and GDS was negative but low and non-significant. Only age group was related to TNI-93 score with significant differences between 60-70 and ≥ 81 years old groups. Multiple regression analysis showed age as the main predictor of TNI-93 total score.

Conclusions: Our results show moderate values of convergent validity and the influence of age but not of gender or years of schooling on TNI-93 score. Preliminary normative data and a formula to compute expected results and a z score was developed. TNI-93 may be a promising brief screening tool for detection of cognitive deterioration/mild cognitive defect/dementia in people aged ≥ 60 years with illiteracy, functional illiteracy or low level of schooling.
Índice geral

I. Introdução .. 8
II. Manuscrito .. 11
III. Conclusão .. 36
IV. Anexos.. 38
Índice de Anexos

Anexo 1. Protocolo de investigação (Termo de consentimento e dados sociodemográficos) ...40
Anexo 2. Comprovativo de submissão .. 44
Anexo 3. Regras da submissão ..46
Anexo 4. Comunicação oral ... 70
Anexo 5. Errata ...77
I. Introdução

O crescimento da esperança média de vida e da longevidade, traduz-se num aumento da população idosa [proporção de pessoas com idade igual ou superior a 65 anos em Portugal] que cresceu de 8% em 1960 para 17% em 2005 e 19% em 2011; o índice de envelhecimento em 2001 foi de 102 (100 jovens para 102 idosos), em 2011 de 128 e em 2013 de 136 (INE, Censos 2011; INE, Censos 2014; Santana, Farinha, Freitas, Rodrigues, & Carvalho, 2015) o que conduziu a um aumento do risco de morbidades, a saber patologias neurodegenerativas associadas ao declínio cognitivo normal e sua exacerbação.

Com base nos resultados de Santana et al. (2015), podemos então extrapolar que em 2018 teremos 21 885 novos casos em Portugal em comparação com 2013, ou seja, uma estimativa de 182 172 casos de demência na faixa etária acima de 60 anos.

O aumento da prevalência de demência entre indivíduos ilíteratos pode ser explicado por vários fatores, que não são necessariamente exclusivos. Podem ser relacionados aos procedimentos de avaliação (por exemplo, viés de teste, falta de sabedoria de teste), mas também a fatores predisponentes baseados na vida e / ou educação. Analisando o potencial viés dos testes utilizados acima referidos, constatou-se que muitas investigações às quais eram ajustadas pontuações de corte, era presumível que os testes fossem apropriados para ilíteratos (Zhang et al., 1990), ou que incluísem critérios adicionais, como por exemplo, questionários de informantes (Herrera et al., 2002; Nitrini et al., 2004) e/ou avaliação de atividades de vida diárias (ADLs) (Kwon et al., 2012) (Kosmidis, 2017).
Uma das consequências associadas à demência, para além da mortalidade, é a morbidade. Assunto ao qual merece um pouco mais de atenção, porque ao comparamos o número de pessoas com idade ≥ 60 anos detentores de incapacidade, podemos ver estimativas de 2,4% para todas as formas de cancro, 5,0% para doença cardiovascular, 9,5% para acidente vascular cerebral, enquanto que na demência, a estimativa é de 11,9% (Santana, Farinha, Freitas, Rodrigues, & Carvalho, 2015; Organização Mundial da Saúde, 2003, 2012; Alzheimer's Disease International, 2012).

Presumindo que o surgimento de demência na população idosa poderá incidir nos indivíduos com iliteracia, iliteracia funcional ou baixa escolaridade, visto que representam uma percentagem importante (cerca de 77,7%) da população com idade ≥ 60 anos (INE, Censos 2011) entende-se que a escolaridade desenvolve estratégias认知的 (tanto explícitas quanto implícitas) na organização e retenção de informação; na capacidade de concentração; na admissão de acompanhamento médico; e até mesmo na motivação interna para um bom desempenho (Kosmidis, 2017).

Efetivamente, os instrumentos de medição em uso têm vários vieses na avaliação dessa subpopulação: (1) Itens compostos por tarefas de "laboratório" ou "tipo de escola", envolvendo leitura, escrita, cálculo, velocidade de resposta e afins. Desta forma, tais procedimentos tomam como certos conhecimentos específicos de "socialização" dentro de um sistema escolar, que pode contribuir para uma superestimação de hiperdiagnóstico do défice cognitivo dessa subpopulação. A literatura publicada sobre correlatos cognitivos de analfabetismo/illiteracia mostra, além de diferenças quantitativas, a existência de diferenças qualitativas, em termos de estratégias cognitivas usadas para resolver itens, e também diferenças cerebrais funcionais e estruturais, entre idosos alfabetizados e iliteratos; (2) Um fator potencial adicional com impacto no desenvolvimento e funcionamento do cérebro pode ser representado pela falta de oportunidades e privação precoce de necessidades básicas (habitação, nutrição, saúde) ligadas ao baixo estado socioeconómico dessa subpopulação (Kosmidis, 2017).
Embora nenhum dos instrumentos seja completamente isento de problemas, o nosso estudo enquadra-se na perspectiva de um teste neuropsicológico rápido de rastreio não-verbal para MCD / demência, pois apela à memória episódica e é baseado em nove desenhos a preto e branco - Test des Neuf Images / TNI 93 (Dessi, F. et al., 2009; Maillet, D. et al., 2016), que não implica "escolaridade" e cuja as áreas avaliadas (memória episódica de objetos / recordação livre e dirigida) não tem demonstrado diferenças entre as populações alfabetizadas ou iliterateas (Folia & Kosmidis, 2003; Mokri et al., 2012; Nitrini et al., 2004).

O artigo “O Test des Neuf Images 93: estudo preliminar de validade e dados normativos numa amostra portuguesa de idosos analfabetos e com baixo nível de escolaridade” é composto por uma amostra Snowball, envolvendo 115 participantes (com idades ≥60 anos). A colheita dessa mesma amostra ocorreu em lares/centros de dias, e alguns dos casos nas suas próprias habitações quando autorizado pelos mesmos.

Nos critérios de inclusão os participantes não poderiam apresentar queixas amnésicas e teriam de ser autónomos nas suas atividades de vida diárias. O protocolo de avaliação integrava as versões portuguesas do TNI-93 Addenbrook's Examination III (ACE-III) e a GDS.
II. Manuscrito

The Test des Neuf Images 93: preliminary study of validity and normative data in a Portuguese sample of illiterate and low educated elderly

Marta S. Couto, CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandia, 1317, 4585-116 Gandia PRD, Portugal; martinhacouto2010@hotmail.com +351 912933497

J. Carlos Caldas, CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde; CINTESIS, Centro de Investigação em Tecnologias e Serviços de Saúde; Departamento de Ciências Sociais e do Comportamento do Instituto Universitário de Ciências da Saúde, Rua Central de Gandia 1317, 4585-116 Gandia PRD, Portugal; carlos.caldas@iucs.cespu.pt +351 933295345

Corresponding Author – J. Carlos Caldas, Rua Central de Gandia 1317, 4585-116 Gandia PRD, Portugal; carlos.caldas@iucs.cespu.pt +351 933295345
Abstract

Objective: One of the challenges to neuropsychological assessment for screening of cognitive deterioration/mild cognitive defect/dementia in people aged ≥ 60 years with illiteracy, functional illiteracy or low level of schooling refers to the appropriateness of the tests used. The present study, based on a sample of Portuguese elderly, aimed to evaluate the characteristics of convergent and divergent validity and to establish preliminary normative data for the Portuguese version of the Test des Neuf Images 93 (TNI-93), a non-verbal episodic memory test in images.

Method: A snowball sample of 115 older adults (≥ 60 years), without mnemonic complaints and autonomous in daily living activities were assessed with the Portuguese versions of TNI-93, Addenbrook's Examination III (ACE III) and Geriatric Depression Scale (GDS).

Results: Correlations between TNI-93 and ACE-III total score and subscores were significant, though moderate. Correlation between TNI-93 and GDS was negative but low and non-significant. Only age group was related to TNI-93 score with significant differences between 60-70 and ≥ 81 years old groups. Multiple regression analysis showed age as the main predictor of TNI-93 total score.

Conclusions: Our results show moderate values of convergent validity and the influence of age but not of gender or years of
schooling on TNI-93 score. Preliminary normative data and a formula to compute expected results and a z score was developed. TNI-93 may be a promising brief screening tool for detection of cognitive deterioration/mild cognitive defect/dementia in people aged ≥ 60 years with illiteracy, functional illiteracy or low level of schooling.

Keywords: Assessment; Dementia; Mild cognitive impairment; Elderly/Geriatrics/Aging; Learning and memory; Norms/normative studies
Introduction

The successive increase in average life expectancy and longevity, which translates into an increase in the elderly population [the proportion of people aged 65 and over in Portugal rose from 8% in 1960 to 17% in 2005 and 19% in 2011; the index of aging in 2001 was 102 (100 young people for 102 elderly), in 2011 it was of 128 and in 2013 of 136 (INE, Censos 2011; iNE, Censos 2014; Santana, Farinha, Freitas, Rodrigues, & Carvalho, 2015), leads to an increased risk of morbidities, namely neurodegenerative pathologies associated with normal cognitive decline and its exacerbation. Among the neurodegenerative pathologies, it is worth highlighting the dementia pictures as clinical expression of different pathological entities and that present incidence and prevalence that increase exponentially with age, practically doubling every 5 years, after 60 years of age (Bermejo-Pareja, Benito-León, Vega, Medrano, & Román, 2008; Fratiglioni, Ronchi, & Agüero-Torres, 1999; Hofman et al., 1991; Jorm & Jolley, 1998; Kawas, 2008; Santana, Farinha, Freitas, Rodrigues & Carvalho, 2015; Von Strauss, Viitanen, De Ronchi, Winblad & Fratiglioni, 1999).

The prevalence of dementia at the age of 60 years is between 5-7% and the incidence has been increasing from 7.5/1000 per year in 2005 to 7.7/1000 per year in 2012 (Ferri, et al., 2005; Santana,
Farinha, Freitas, Rodrigues, & Carvalho, 2015; World Health Organization, 2012; Alzheimer’s Disease International, 2012). More relevant than the mortality associated with dementia is morbidity. In fact, if we compare the number of years people aged ≥ 60 years live with disability, we can see estimates of 2.4% for all forms of cancer, 5.0% for cardiovascular disease, 9.5% for stroke, while, for dementia, the estimate is 11.9% (Santana, Farinha, Freitas, Rodrigues, & Carvalho, 2015; World Health Organization, 2003, 2012; Alzheimer’s Disease International, 2012). This translates into a huge direct and indirect economic burden on the national health system, on society and on families.

Between 2003 and 2008, Nunes, Silva and Silva (Nunes, Silva, & Silva, 2008; Nunes et al., 2010; Santana, Farinha, Freitas, Rodrigues, & Carvalho, 2015) carried out the first study to determine the prevalence of mild cognitive defect (MCD) and dementia in Portugal, in a sample of the population aged 55-79 years. This study revealed dementia and MCD prevalence of, respectively, 2.7% and 12.3%.

Also, Santana et al. (2015) in a study based on the Estimates of the Resident Population in Portugal on June 2014 and estimates of dementia prevalence for the EURO A region, estimated the
prevalence of dementia in the age range ≥ 60 years and in 2013, to be 5.91%.
In the same study, and based on the same procedure, a perspective was drawn on the longitudinal evolution of these estimates, between 2003, 2008 and 2013, in which there was a successive increase in cases (120 506 cases in 2003; 17 884 new cases between 2003 and 2008 and an increase of 21 879 cases between 2008 and 2013), representing an average annual increase estimate of 4 377 new cases.
Based on the results of this study, we can then extrapolate that in 2018 we will have 21 885 new cases in Portugal compared to 2013, that is, an estimate of 182 172 cases of dementia in the age group above 60 years.
The neuropsychological evaluation and early diagnosis of MCD and dementia are therefore extremely important in the early detection of cognitive deterioration.
Within the elderly population, individuals with illiteracy, functional illiteracy or low educational level represent an important percentage (nearly 77.7%) of the population aged ≥ 60 years old (INE, Censos 2011).
Although the well-documented risk of illiteracy for cognitive impairment, there may be a trend on measures used in studies
documenting this link to overestimate/overdiagnose cognitive defect in this subpopulation.

One of the problems/challenges to neuropsychological assessment in terms of instruments (neuropsychological tests) for the early detection of MCD/cognitive deterioration/dementia in people aged ≥ 60 years with illiteracy, functional illiteracy or low level of schooling refers to the appropriateness of the tests used for this subpopulation.

Effectively, the measuring instruments in use have several biases in the evaluation of this subpopulation: (1) Items composed of "laboratory" or "school type" tasks, involving reading, writing, calculation, response speed, etc. Such procedures take for granted specific knowledge and "socialization" within the school system. This may contribute to an overestimate/hyperdiagnosis of cognitive deficit in this subpopulation. The published literature on cognitive correlates of illiteracy/literacy shows, in addition to quantitative differences, the existence of qualitative differences in terms of cognitive strategies used to solve items and also functional and structural brain differences between literate and illiterate elders; (2) An additional potential factor with an impact on brain development and functioning may be represented by lack of opportunities and early deprivation of basic needs (housing, nutrition, health ...) linked
to the low socio-economic status of this subpopulation (see Kosmidis, 2017 for a revision on the subject).

Regarding the adequacy of neuropsychological tests for the assessment of cognitive defect and dementia in this subpopulation, several solutions have been explored: (1) Construction of new tests in which the format of the items simulate real-life rather than school-based activities (ecological validity) and eliminates items and areas that the investigation shows to disadvantage this subpopulation (Folia & Kosmidis, 2003; Kosmidis et al, 2003, 2011; Yassuda et al, 2009); (2) Adaptation of existing tests, through the establishment of specific norms for this subpopulation (Ardila, et al., 2010), suitability/alteration of items taking into account those types of items and areas that the investigation shows to disadvantage this subpopulation and alteration of the testing procedures, introducing sessions of training in tasks similar to the tasks involved in the test, in order to develop the familiarization and automation of processes, as proposed by Nell in 2000 (cit. in Kosmidis, 2017).

Although none of these attempts is problem-free, our study falls within the perspective of a rapid non-verbal screening neuropsychological test for MCD/dementia, appealing to episodic memory and based on nine black and white drawings - Test des Neuf Images/TNI 93 (Dessi, F. et al., 2009; Maillet, D. et al., 2016).
which does not imply "schooling" and whose area evaluated (episodic memory of objects/free and cued recall) has been demonstrated as not showing large differences between populations with or without literacy (Folia & Kosmidis, 2003; Mokri et al., 2012; Nitrini et al., 2004).

Methods

Participants

A snow-ball sample of the Portuguese population from the northern region (N = 115), from both genders (male = 20.9%; female = 79.1%), aged 60-97 years (M = 77.4; SD = 8.6) and with a level of schooling ranging from illiterate to four years (M = 2.21; SD = 1.7), without subjective mnesic complaints and autonomous in daily living activities. Individuals with neuropsychiatric history or other medical diagnosis that could interfere with their normal neurocognitive functioning were excluded.

The participants were recruited in day centers, nursing homes and in their homes, in the district of Porto/Portugal.

Materials

A sociodemographic questionnaire made for this study; The Portuguese version of TNI-93 (Dessi, et al., 2009; Maillet, et al., 2016), a non-verbal screening neuropsychological test for MCD/dementia, appealing to episodic memory and based on nine
black and white drawings of objects, body parts, animals, fruits and vegetables (bicycle, guitar, chair, shoe, fork, ear, duck, grapes and carrot) which does not imply "schooling" and whose area evaluated (episodic memory of objects/free and cued recall) has been demonstrated as not showing large differences between population with or without literacy. Total score may vary between 0-9 points, (sum of free and cued recall); the Portuguese versions of ACE-III (Machado, Baeta, Pimentel, & Peixoto, 2015; Peixoto et al., 2018) and of the GDS (Yesavage, et al., 1983).

ACE-III was included to establish TNI-93 convergent validity and GDS was included in order to establish TNI-93 divergent validity. Both ACE-III and GDS have proven solid psychometric properties and are widely used.

Procedures and Analysis

After approval by the original author, TNI-93 instructions for application and quotation were translated into Portuguese (once TNI-93 items are non-verbal there wasn´t the need to use translation and retroversion). After obtaining written informed consent from all participants and authorization from institutions involved, the instruments were administered in a private room, in the following order: (1) Sociodemographic questionnaire; (2) TNI-93; (3) GDS (the
items and alternative responses were read in loud voice and the answers registered by the investigator); (4) ACE-III. Statistical analysis was carried out using the program IBM Statistics version 24 for Windows. Kolmogorov-Smirnov (KS) test was used to test for normal distribution of results. Convergent validity was established by the correlation of the total TNI-93 score with ACE-III different scores and divergent validity established by the correlation between TNI-93 and GDS total scores.

The effect of age, gender, and educational level on TNI-93 performance was evaluated through Mann Whitney U and Kruskal-Wallis tests.

To determine the predictive model of TNI-93 scores, multiple linear regression analysis was performed. A normative equation was extracted in order to enable the determination of the expected score according to the predictive variables of TNI-93.

Significance was determined with $p \leq .05$.

Results

Descriptive Statistics: Demographic Characteristics of the Sample and tests scores

Descriptive statistics of the sample are showed in Table 1. The mean age was 77.4 years with a higher percentage of elders aged more than 71 years (71-80 years = 35.7%; ≥ 81 years = 40%). The
sample was predominantly female (79.1%) and mean educational level in years of schooling was 2.21 years with a predominance of 3-4 years (58.3%). Sample residence was predominantly at home (71.3%).

[Insert table 1]

Descriptive data for the tests scores for the total sample are shown in Table 2. TNI-93 total score had a mean of 8.36 (SD = .98); ACE-III total mean score was 56.83 (SD = 15.1), language subtest mean score was 16.55 (SD = 4.70), memory subtest mean score was 13.55 (SD = 3.89), Attention subtest mean score was 12.82 (SD = 2.85), Visuospatial subtest mean score was 8.43 (SD = 3.40) and Fluency subtest mean score was 5.49 (SD = 3.13). Finally, GDS total mean score was 11.48 (SD = 6.5).

[Insert table 2]

Table 3 shows the distribution of TNI total scores by age group, gender and educational level (in years). Mean results showed mean scores lowering with increasing age [60-70 years group mean = 8.68 (SD = .82); 71-80 years group mean = 8.39 (SD = .83); ≥ 81 years group mean = 8.13 (SD = 1.15)] and differences favoring females (M = 8.41; SD = .94) compared to males (M = 8.17; SD = 1.13) and 3-4 years educational level (M = 8.54; SD = .79) compared to 0-2 years (M = 8.10; SD = 1.17).
Convergent and Divergent Validity: Correlations between TNI-93, ACE-III and GDS Scores

As can be seen in Table 3, TNI-93 total score showed positive and significant moderate correlations with ACE-III total score ($r = .381, p < .001$) and subscores (varying between $r = .278$ to $.369$ and $p \leq .001$ to $.002$) and a non-significant low negative correlation with GDS total score ($r = -.014, p = .878$).

Differences by Gender, Years of Schooling and Age in Years

Table 3 shows the results of the comparisons by gender, years of schooling and age in years) on TNI-93 total score. Although, as seen before, there are differences in the means between age in years groups, gender groups and education in years groups, only the differences between age in years groups show significance ($H = 6.086$ (2); $p = .048$). When we tested for differences between pairs of age groups, only 60-70 years age group and ≥ 81 years age group showed significant differences ($H = 17.082; p_{adj} = .044$).

Multiple Linear Regression Model for TNI-93

The multiple linear regression model points to age ($p = .028$) as the main predictor of the performance on TNI-93 (Table 4). This model accounts for 8.1% of the results variance.

[Insert table 4]
From the multiple linear regression model, a predictive equation was extracted to calculate the expected score and, based on it, the correspondent z score of an individual with a given age on TNI-93.

\[
\text{Expected score} = 10,393 - 0,026 \times \text{AGE (in years)}
\]

and

\[
\text{z score} = (\text{raw score} - \text{expected score})/\text{standard deviation}
\]

Discussion

TNI-93 mean score in our sample (8.36) is higher than the mean score found by Dessi et al. (2009) (2.97) and similar to the ones found by Maillet et al. (2016) in their study with two samples of normal elderly (8.4 and 8.7).

ACE-III mean total score and subscores in our sample (Tt = 56.83; Att = 12.82; Mem = 13.55, Fl = 5.49; Lg = 16.55; VS = 8.43) are lower than those found by Machado et al. (2015) in their ACE-III normative study (Tt = 89.4; Att = 17.16; Mem = 23.95, Fl = 9.69; Lg = 25.13; VS = 13.47). Perhaps those differences reflect differences between samples. In fact, while Machado et al. study sample had a mean age of \(70.41 \pm 7.96\) and a mean number of schooling years of \(6.24 \pm 4.07\), our sample’s mean age was higher \((M = 77.4 \pm 8.6)\) and with a lower mean number of schooling years \((M = 2.21 \pm 1.7)\).
GDS showed higher mean scores in our sample (11.48 ± 6.5) than the study by Machado et al. (2015) (7.85 ± 4.26) perhaps due to difficulties in the interpretation of the questions related to low schooling.

Correlations between TNI-93 and ACE-III total score and subscores (r between .278 - .381) show moderate, although significant, convergent validity values.

The non-significant and low negative correlation between TNI-93 and GDS may be related to the small size and low educational level of our sample, proving low divergent validity.

In our sample TNI-93 score was influenced by age but not by gender or schooling. The differences in age and the absence of differences between genders are in accordance with those found by Dessi et al. (2009) and Maillet et al. (2016). However, the absence of differences in schooling years is not in accordance with the literature, perhaps due to the low range of schooling (M = 2.21, range = 0 - 4 years) in our sample but also proving that TNI-93 is an education free test.

Multiple regression analysis enabled the extraction of a normative equation to compare the performance of an individual with the results of our sample, based on expected results (according to age) and computation of a z score.
In conclusion, and although our results must be analyzed with caution because it is a preliminary study with limitations due, namely, to sample size and non-random sampling, TNI-93 proves to have acceptable convergent validity and being a promising brief education-free test for screening of MCD/Dementia for illiterate, functionally illiterate or low educational level elderly population. Future studies should consider random sampling, sample size and the establishment of TNI-93 sensitivity, specificity, positive and negative predictive power and cutoff scores in clinical contexts.

Funding

No funding.

Acknowledgments

The authors thank to all the institutions that enabled us to collect the sample, especially to Dr. Ana Nunes, Dr. Diana Barbosa, Dr. Silvia Ferreira, Dr. Ana Silva, Dr. Sérgio Ferraz and Dr. Carlos Carneiro, as well as all participants.

Conflict of Interest

None to declare

References

Cognition and Neuroscience, 33 (3), 373-386.

doi:10.1080/23273798.2017.1379605

Tables

Table 1. Demographic information

<table>
<thead>
<tr>
<th>Descriptive Variables</th>
<th>N</th>
<th>Percentage</th>
<th>M</th>
<th>SD</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>115</td>
<td>-</td>
<td>77.4</td>
<td>8.6</td>
<td>60-97</td>
</tr>
<tr>
<td>60-70 years</td>
<td>28</td>
<td>24.3</td>
<td>65.5</td>
<td></td>
<td>60-70</td>
</tr>
<tr>
<td>71-80 years</td>
<td>41</td>
<td>35.7</td>
<td>74.8</td>
<td></td>
<td>71-80</td>
</tr>
<tr>
<td>≥ 81 years</td>
<td>46</td>
<td>40.0</td>
<td>85.6</td>
<td></td>
<td>81-97</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>24</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>91</td>
<td>79.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational Level (years of schooling)</td>
<td>115</td>
<td>2.21</td>
<td>1.7</td>
<td>0-4</td>
<td></td>
</tr>
<tr>
<td>0-2 years</td>
<td>48</td>
<td>41.7</td>
<td>0.3</td>
<td></td>
<td>0-2</td>
</tr>
<tr>
<td>3-4 years</td>
<td>67</td>
<td>58.3</td>
<td>3.6</td>
<td></td>
<td>3-4</td>
</tr>
<tr>
<td>Residence</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home</td>
<td>82</td>
<td>71.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nursing Home</td>
<td>33</td>
<td>28.7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: M = mean; SD = standard deviation
<table>
<thead>
<tr>
<th>Tests scores</th>
<th>TNI-93</th>
<th>GDS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M (SD)</td>
<td>r (p)</td>
</tr>
<tr>
<td>ACE III</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Total (Tt)</td>
<td>56.83 (15.1)</td>
<td>.381 (<.001)</td>
</tr>
<tr>
<td>Attention (Att)</td>
<td>12.82 (2.85)</td>
<td>.302 (.001)</td>
</tr>
<tr>
<td>Memory (Mem)</td>
<td>13.55 (3.89)</td>
<td>.287 (.002)</td>
</tr>
<tr>
<td>Fluency (Fl)</td>
<td>5.49 (3.13)</td>
<td>.347 (<.001)</td>
</tr>
<tr>
<td>Language (Lg)</td>
<td>16.55 (4.70)</td>
<td>.369 (<.001)</td>
</tr>
<tr>
<td>Visuo-spatial (VS)</td>
<td>8.43 (3.40)</td>
<td>.278 (.003)</td>
</tr>
<tr>
<td>TNI-93</td>
<td>8.36 (.98)</td>
<td>--</td>
</tr>
<tr>
<td>GDS</td>
<td>11.48 (6.5)</td>
<td>--</td>
</tr>
</tbody>
</table>

Note: M = mean; SD = standard deviation; r = correlation; p = significance level
Table 3. Differences by age group, gender and educational level on TNI-93 total score (Kruskal-Wallis H and Mann-Whitney U)

<table>
<thead>
<tr>
<th></th>
<th>TNI-93 total score</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>M</td>
<td>SD</td>
<td>Mdn</td>
<td>Range</td>
</tr>
<tr>
<td>Age Group (in years)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60-70 years</td>
<td>115</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>8.68</td>
<td>.82</td>
<td>9.00</td>
<td>5-9</td>
</tr>
<tr>
<td>71-80 years</td>
<td>41</td>
<td>8.39</td>
<td>.83</td>
<td>9.00</td>
<td>6-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>H = 6.086(2); p =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>> 81 years</td>
<td>46</td>
<td>8.13</td>
<td>1.15</td>
<td>9.00</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.048</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>115</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>91</td>
<td>8.41</td>
<td>.94</td>
<td>9.00</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U = 1 193.5; p =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>24</td>
<td>8.17</td>
<td>1.13</td>
<td>9.00</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.474</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Educational level (in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>years)</td>
<td>115</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>0-2 years</td>
<td>48</td>
<td>8.10</td>
<td>1.17</td>
<td>9.00</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U = 1 901.5; p =</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-4 years</td>
<td>67</td>
<td>8.54</td>
<td>.79</td>
<td>9.00</td>
<td>5-9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: M = mean; SD = standard deviation; Mdn = median; df = degrees of freedom
Table 4. Multiple linear regression model for TNI-93 total score

<table>
<thead>
<tr>
<th>Domain</th>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>B</th>
<th>T</th>
<th>p</th>
<th>R²</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNI-93 score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.08</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>-0.025</td>
<td>0.011</td>
<td>-0.216</td>
<td>-2.221</td>
<td>0.028</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education</td>
<td>0.063</td>
<td>0.058</td>
<td>0.108</td>
<td>1.084</td>
<td>0.281</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>-0.383</td>
<td>0.227</td>
<td>-0.159</td>
<td>-1.688</td>
<td>0.094</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: $R^2 = $ results variance; $p =$ significance level
III. Conclusão

Este estudo apresentou uma validade convergente, moderadamente significativa, entre o TNI-93 e o ACE-III. Denotou-se que a idade é um preditor, apesar de não se ter verificado a mesma influência para o género ou nível de escolaridade nos resultados do TNI-93. A influência da idade e a ausência de diferenças entre os géneros estão de acordo com os estudos de Dessi et al. (2009) e Maillet et al. (2016). No estudo verificou-se que a ausência do nível de escolaridade não influenciou os resultados, efeito que não vai de encontro à literatura. Este facto pode ser justificado pela restrição da amostra, apresentando um nível de escolaridade baixo ou até inexistente (M = 2,21, intervalo = 0 - 4 anos), contrariamente aos estudos desses mesmos autores.

Nesta amostra a média do TNI-93 (8,36) é superior à média encontrada em outros estudos, como por exemplo, no estudo de Dessi et al. (2009) onde a média da amostra é inferior (2,97), porém obtivemos resultados similares ao estudo realizado por Maillet et al. (2016) nas duas amostras de idosos normais (8,4 e 8,7).

O ACE-III foi um dos testes utilizados no protocolo ao qual se verificou que a média dos resultados totais e seus domínios nesta amostra, mostraram-se inferiores às pontuações do estudo de Machado et al. (2005). Estas disparidades podem ser justificadas pelas diferentes constituições da amostra. Quero dizer com isto que no estudo de Machado et al (2005) a média de idade é de (M = 70,41 ± 7,96) e a média de escolaridade (M = 6,24 ± 4,07), enquanto que no nosso estudo a média de idade da amostra é superior (M = 77,4 ± 8,6) e a média de escolaridade é inferior (M = 2,21 ± 1,7).

Para além do teste (ACE-III) ter sido utilizado como ferramenta do protocolo, foi também um instrumento de correlação com o TNI-93, que comprovou ter validade convergente, moderadamente significativa.

Numa outra perspetiva, foi utilizada a GDS que no nosso estudo apresentou resultados médios mais elevados (M = 11,48 ± 6,5) em relação ao estudo de Machado et al. (2015) (M = 7,85 ± 4,26), facto que pode ser explicado pelas
dificuldades de interpretação das questões, relacionadas com o baixo nível de escolaridade.

Para avaliar a validade divergente, correlacionou-se o TNI-93 e a GDS, que mostrou ter uma validade divergente embora não se tenha denotado significativa, podendo estar relacionada com o tamanho e o nível educacional da nossa amostra.

Estes resultados permitiram a extração de uma equação normativa como forma de comparação entre o desempenho de um indivíduo e os resultados de nossa amostra, com base nos resultados esperados (de acordo com a idade) e no cálculo da pontuação z.

Concluímos que embora os nossos resultados devam ser analisados com precaução, isto porque é um estudo preliminar com limitações, nomeadamente, no que diz respeito ao tamanho da amostra e da mesma não ser aleatória, o TNI-93 prova ter uma validade convergente moderadamente significativa e ser um teste promissor independente de educação para o rastreio deterioração cognitiva/defeito cognitivo ligeiro/demência para a população idosa com iliteracia, iliteracia funcional ou baixo nível de escolaridade.

Este estudo vem realçar a necessidade de em estudos futuros ser considerada uma amostra aleatória e o tamanho da mesma; assim como estabelecer a sensitividade, a especificidade, o poder preditivo positivo e negativo; e os pontos de corte do TNI-93 em contextos clínicos.
IV. Anexos
Anexo 1: Protocolo de investigação
Termo de consentimento informado

CONSENTIMENTO INFORMADO, ESCLARECIDO E LIVRE PARA PARTICIPAÇÃO EM ESTUDO DE INVESTIGAÇÃO
(de acordo com a Declaração de Helsinquiia e a Convenção de Oviedo)

[Este documento representa uma forma de “contrato” entre investigador/a e participante, por isso cada parte fica com uma via assinada por ambos – o primeiro “outorgante” guarda-o para provar que pediu e obteve consentimento perante eventuais auditorias; o segundo “outorgante” guarda-o para reter, revogar se assim o entender ou reclamar se verificar eventual incumprimento do garantido.]

Por favor, leia/ouça com atenção a seguinte informação. Se achar que algo está incorreto ou que não está claro, não hesite em solicitar mais informações. Se concorda com a proposta que lhe foi feita, queira assinar este documento no final.

Título do estudo: “Aferição e normalização do Test des Neuf Images (TNI) numa amostra de idosos portugueses da região norte com baixa escolaridade ou iliteracia”

Enquadramento: O presente estudo está inserido na tese da aluna do curso de mestrado em Psicologia da Saúde e Neuropsicologia do Instituto Universitário de Ciências da Saúde (IUCS) Marta Couto, sob orientação do Prof. Doutor José Carlos Caldas.

O estudo integra uma colaboração com a equipa do Prof. Doutor Didier Mailet, Neurologista da Unité fonctionnelle Mémoire et Maladies Neurodégénératives, Service de Neurologie, CHU Avicenne, a Dr.ª Élia Baeta, Neurologista da Unidade Local de Saúde do Alto Minho, o Prof. Doutor Bruno Peixoto, Neuropsicólogo e o Prof. Doutor José Carlos Caldas, Psicólogo, ambos docentes do IUCS e investigadores do CINTESIS (Centro de Investigação em Tecnologias e Serviços de Saúde, Faculdade de Medicina, Universidade do Porto).

Explicação do estudo: Trata-se de um estudo que pretende fazer a adaptação e validação de uma bateria (conjunto) de testes neuropsicológicos para idosos iliteratos (analfabetos) e com baixo nível de escolaridade, para a população portuguesa.

Aos participantes será pedido para efetuarem um conjunto de testes neuropsicológicos, com duração total de cerca de uma hora, deslocando-se a investigadora à instituição frequentada pelo participante em horário a combinar.
Condições: A participação no estudo é voluntária, não havendo qualquer prejuízo para o participante em termos assistenciais, caso recuse participar.

Confidencialidade e anonimato: É assegurada a confidencialidade de todos os dados e seu uso exclusivo para o presente estudo, sendo mantidos anónimos os dados de identificação dos participantes.

Nome do investigador: ________________________________
Contacto: Telemóvel ____________
Assinatura: ________________________________ Data: __/__/_____

Declaro ter compreendido as informações verbais que me foram fornecidas pela investigadora e ter-me sido garantida a possibilidade de, em qualquer altura, recusar participar no estudo sem qualquer tipo de consequências. Desta forma, aceito participar neste estudo e permito a utilização dos dados que de forma voluntária forneço, confiando em que apenas serão utilizados para esta investigação e nas garantias de confidencialidade e anonimato que me são dadas pelo/a investigador/a.

Nome do participante: _______________________________________
Assinatura: ________________________________ Data: __/__/_____

SE NÃO FOR O PRÓPRIO A ASSINAR (POR IMPOSSIBILIDADE)
Nome de quem assina a rogo: ________________________________
Grau de parentesco ou tipo de representação: ___________________
Assinatura ________________________________ Data: __/__/_____

41
Dados Sociodemográficos

Data de Aplicação: __/__/____
Local: _____________________ Investigador: ___________________
Código de colheita: ______________________
Nome do Participante: ______________________________________

Data de Aplicação: __/__/____
Local: _____________________ Investigador: ___________________
Código de colheita: ______________________
Idade: ______ Género: M F

Escolaridade: ______; Profissão:_______________; Atividade atual:_______;

Local de residência:_______; Estado Civil: Solteiro/Casado/Divorciado/Viúvo;
Agregado Familiar: Sozinho/Família/Institucionalizado. Esteve emigrado?
Sim/Não; Onde?_______________; Quanto tempo (anos)? __________

Histórico/Hábitos
Outras informações (limitações, patologias prévias ou atuais, terapêutica farmacológica):

Observações
Consumo de álcool (prévio/atual) __________/_________________________
Hábitos tabágicos (prévio/atual) __________/_________________________
Outras substâncias (Prévio/atual) __________/_________________________

OBSERVAÇÕES:
Anexo 2: Comprovativo de submissão
Submission Confirmation

Thank you for your submission

Submitted to
Archives of Clinical Neuropsychology

Manuscript ID
ACNP-2018-147

Title
The Test des Neuf Images 93: preliminary study of validity and normative data in a Portuguese sample of illiterate and low educated elderly

Authors
Caldas, José Carlos
Couto, Marta

21-Sep-2018
Submitted Manuscripts

x

Page Guidelines

Close

<table>
<thead>
<tr>
<th>Status</th>
<th>Id</th>
<th>Title</th>
<th>Created</th>
<th>Submitted</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRE: Not</td>
<td>Awaiting EO</td>
<td>The Test des Neuf Images 93: preliminary study of validity and normative data in a Portuguese sample of illiterate and low educated elderly</td>
<td>19-Sep-2018</td>
<td>21-Sep-2018</td>
</tr>
<tr>
<td>Assigned</td>
<td></td>
<td>View Submission</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hardwidge, Claire

[Editorial Office Processing](#)
Anexo 3: Regras da submissão
Instructions to authors

Please note that the journal requires authors to complete their copyright licence to publish form online

Manuscripts for Archives of Clinical Neuropsychology should be submitted online. Once you have prepared your manuscript according to the instructions below, please visit the online submission Web site. Use the Web site to upload your files both as individual word-processing and graphics files, and as a single PDF with graphics included. Instructions on submitting your manuscript online can be viewed here.

Please read these instructions carefully and follow them strictly. In this way you will help ensure that the review and publication of your paper are as efficient and quick as possible. The editors reserve the right to return manuscripts that are not in accordance with these instructions. Papers must be clearly and concisely written in English.

Please note that all authors may upload their accepted manuscript PDF to institutional and/or centrally organized repositories (including PubMed Central), but must stipulate that public availability be delayed until 12 months after first online publication in the journal. For National Institute of Health (NIH) grantees this means that publishing in Archives of Clinical Neuropsychology is fully compliant with the NIH Public Access policy. For full information about this journal's self-archiving policy, please visit our Author Self-Archiving policy page.

In addition, Archives of Clinical Neuropsychology is offering an open access option for authors who wish to make their papers freely available online immediately. Please see the Open Access Option section below for more information.
SCOPE AND POLICY OF ARCHIVES OF CLINICAL NEUROPSYCHOLOGY

Archives of Clinical Neuropsychology, the official journal of the National Academy of Neuropsychology, publishes original contributions dealing with psychological aspects of the etiology, diagnosis, and treatment of disorders arising out of dysfunction of the central nervous system.

The journal will also consider manuscripts involving the established principles of the profession of neuropsychology: (a) delivery and evaluation of services, (b) ethical and legal issues, (c) approaches to education and training.

Preference will be given to empirical reports and key reviews. Brief research reports and commentaries on published articles (not exceeding two printed pages) will also be considered. At the discretion of the editor, rebuttals to commentaries may be invited. Occasional papers of a theoretical nature will be considered.

The primary criterion for acceptance is scientific quality. Papers should avoid excessive use of abbreviations or jargon and should be intelligible to as wide an audience as possible. Particular attention should be paid to the Abstract, Introduction, and Discussion sections, which should clearly draw attention to the novelty and significance of the data reported. Failure to do this may result in delays in publication or rejection of the paper.

Editor-in-Chief

Dr. Gregory P. Lee, PhD, Department of Neuropsychology, Barrow Neurological Institute, 222 W. Thomas Rd., Suite 315, Phoenix, AZ 85013, USA. e-mail: Gregory.lee@dignityhealth.org.
Deputy Editor

Dr. Mike R. Schoenberg, PhD, Department of Neurosurgery & Brain Repair, University of South Florida Morsani College of Medicine, South Tampa Center, 2 Tampa General Circle, Tampa, FL 33606, USA. e-mail: mschoenb@health.usf.edu

ARTICLE TYPES

The following categories of article are considered for publication in Archives of Clinical Neuropsychology:

original empirical article

brief empirical report

book review

test review

literature review

commentary

case report

REPORTING GUIDELINES

Responsible reporting of research studies, which includes a complete, transparent, and accurate account of what was done and what was found during a research study, is an integral part of good research and publication practice and not an optional extra. The Archives of Clinical Neuropsychology supports initiatives aimed at improving the reporting of health research. To accomplish this, we are asking authors to use the following reporting guideline checklists when drafting and submitting their manuscripts.

Once you have completed this checklist, please save a copy and upload it as part of your submission. When requested to do so as part of the upload process, please select the file type: *Reporting Guidelines Checklist*. Please DO NOT include this checklist as part of the main manuscript document. It **must** be uploaded as a separate file.

- **Observational Studies.** *Archives of Clinical Neuropsychology* requires the STROBE checklists for cohort, case-controlled, and cross-sectional studies and all observational studies of human subjects as well as case series, pilot studies, and retrospective data collection studies. Please make note on this checklist (http://www.equator-network.org/wp-content/uploads/2013/09/STROBE-Checklist-v4-MS-Word.doc) which page numbers of the manuscript include the requested information.

- **Systematic Review or Meta-analyses.** Authors reporting systematic review or meta-analysis of *randomized trials* must submit the PRISMA (previously named QUOROM) statement, which is available at: http://www.equator-network.org/reporting-guidelines/prisma/ Authors using the PRISMA checklist should also include a PRISMA flow diagram as Figure 1 of the submitted manuscript.

Authors reporting *meta-analyses of observational studies* must submit the MOOSE checklist which may be obtained in the Stroup, et al. (2000) reference below or by requesting it from the editors of *Archives of Clinical Neuropsychology*.

- **Interventional Effectiveness Studies.** Authors reporting studies of the efficacy of various interventions must submit the completed SQUIRE checklist. The checklist and glossary of key terms used in SQUIRE 2.0 is available at:

- **Diagnostic Accuracy.** Authors reporting studies of the accuracy of diagnostic tests should provide the completed STARD checklist. Authors must also provide a flow diagram as Figure 1 of the submitted manuscript. The STARD checklist is available at: http://www.equator-network.org/wp-content/uploads/2015/03/STARD-2015-checklist.pdf

- **Qualitative Research.** Authors submitting studies using qualitative methods should include the SRQR (formally known as COREQ) checklist as part of their submission to the journal. The SRQR checklist may be obtained in the O’Brien, et al. (2014) reference below or in *Archives of Clinical Neuropsychology, 2017*, volume 32, issue number 5.

- **Case Reports.** Authors submitting reports on single case studies must complete the CARE checklist and include the checklist with the submitted manuscript. The CARE checklist is available at: http://data.care-statement.org/wp-content/uploads/2016/08/CAREchecklist-English-2016.pdf

- **Randomized Controlled Trials.** Authors reporting the results of randomized controlled trials must submit a CONSORT checklist and flow diagram available at: http://www.equator-network.org/reporting-guidelines/consort/ Authors must also provide a flow diagram as Figure 1 of the submitted manuscript. Authors of uncontrolled, pilot trials are not required to complete the CONSORT checklist or flow diagram.

Reference

CONFLICTS OF INTEREST

At the point of submission, Archives of Clinical Neuropsychology policy requires that each author reveal any financial interests or connections, direct or indirect, or other situations that might raise the question of bias in the work reported or the conclusions, implications, or opinions stated—including pertinent commercial or other sources of funding for the individual author(s) or for the associated department(s) or organization(s), personal relationships, or direct academic competition. When considering whether you should declare a conflicting interest or connection please consider the conflict of interest test: Is there any arrangement that would embarrass you or any of your co-authors if it was to emerge after publication and you had not declared it?

As part of the online submission process, Corresponding authors are required to confirm whether they or their co-authors have any conflicts of interest to declare, and to provide details of these. It is the Corresponding author’s responsibility to ensure that all authors adhere to this policy.

Examples of potential conflicts of interest which should be disclosed include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/registrations, and grants or other funding. Potential conflicts of interest should be disclosed at the earliest possible stage and if the manuscript is accepted, conflict of interest information will be communicated in a statement in the published paper.

HAZARDS AND HUMAN OR ANIMAL SUBJECTS

If the work involves chemicals, procedures or equipment that have any unusual hazards inherent in their use, the author must clearly identify these in the manuscript. If the work involves the use of animal or human subjects, the author should ensure that the manuscript contains a statement that all procedures were performed in compliance with relevant laws and institutional guidelines.
and that the appropriate institutional committee(s) have approved them. Authors should include a statement in the manuscript that informed consent was obtained for experimentation with human subjects. The privacy rights of human subjects must always be observed.

PREPARATION OF MANUSCRIPTS

Manuscripts should be prepared carefully according to the American Psychological Association Manual of Style (6th ed). The most important rule of good style is to be consistent throughout a manuscript. Manuscripts accepted for publication must conform strictly to these style guidelines, and the editor reserves the right to make appropriate changes. If a manuscript is not in suitably usable condition, the editor reserves the right to postpone or refuse publication or request retyping.

Italics are not to be used for expressions of Latin origin, for example, in vivo, et al., per se. Use decimal points (not commas); use a space for thousands (10 000 and above). Please avoid full justification, i.e., do not use a constant right-hand margin. Ensure that each new paragraph is clearly indicated. Present tables and figure legends on separate pages at the end of the manuscript. If possible, consult a recent issue of the journal to become familiar with layout and conventions. Number all pages consecutively.

Manuscripts should be in their final form when they are submitted, so that proofs require only correction of typographical errors. All parts of the manuscript (except figures) should be double-spaced throughout and should be in a word-processing file.

Sections of the manuscript

Manuscripts should be subdivided into the following sequence of sections:

Title page
Structured Abstract

Keywords

Introduction

Methods

Results

Discussion

Funding

Acknowledgements

References

Tables

Legends to figures

Figures (if not in a graphic-type file like PDF, tif, eps, etc.)

Supplementary data

Length of manuscript

While papers may be of any length required for the concise presentation and discussion of the data, succinct and carefully prepared papers are favored both in terms of impact as well as in readability.

The Brief Report format may be appropriate for empirically sound studies that are limited in scope, contain preliminary, novel findings that need further replication, or represent replications and extensions of prior published work. A maximum of 2,500 words (not including abstract, tables, figures, or references) and a 150 word abstract, with a maximum of two tables or two figures, or one table and one figure, and 20 references is permitted.
General format

All sections of the manuscript must be double-spaced. Margins of 1 inch should be left at the sides, top, and bottom of each page. Number each page centered at the bottom (Title Page is 1). Italicize words and letters to appear in italics. Clearly identify unusual or handwritten symbols and Greek letters. Differentiate between the letter O and zero, and the letters l and l and the number 1. Each table and figure must be called out in the text.

Title page

The title should be short, specific, and informative. The first name, initial(s), and surname of each author should be followed by his or her department, institution, city with postal code, and country at the time the work was conducted. Email address, phone and fax numbers of the corresponding author should also be provided. Any changes of address may be given in numbered footnotes. The author to whom proofs and reprints should be addressed should be indicated. Please provide a running title of not more than 60 characters. If the submission includes supplementary data (see below) indicate this on the title page and list the supplementary data items submitted.

Abstract

The second page of every manuscript must contain the structured Abstract, which should not exceed 250 words. The Abstract should include each of the following sections:

• Objective: A brief statement of the purpose of the study
• Method: A summary of the participants as well as descriptions of the study design, procedures, and specific key measures.
• Results: A summary of the key findings, including specific results of significance testing to the extent that space allows.
• Conclusions: Clinical and theoretical implications of the findings as space allows.

Abbreviations and reference citations should be avoided.

Key words

Up to six key words, which will appear after the abstract, should be included below the title, each separated by a semicolon (;). Keywords should be selected from the APA list of index descriptors, unless otherwise agreed with the Editor. Thus, please give them careful consideration.

Funding

Details of all funding sources for the work in question should be given in a separate section entitled 'Funding'. This should appear before the 'Acknowledgements' section.

The following rules should be followed:

• The sentence should begin: ‘This work was supported by …’

• The full official funding agency name should be given, i.e. ‘National Institutes of Health’, not ‘NIH’ (full RIN-approved list of UK funding agencies) Grant numbers should be given in brackets as follows: ‘[grant number xxxx]’

• Multiple grant numbers should be separated by a comma as follows: ‘[grant numbers xxxx, yyyy]’

• Agencies should be separated by a semi-colon (plus ‘and’ before the last funding agency)
Where individuals need to be specified for certain sources of funding the following text should be added after the relevant agency or grant number ‘to [author initials]’.

An example is given here: ‘This work was supported by the National Institutes of Health [AA123456 to C.S., BB765432 to M.H.]; and the Alcohol & Education Research Council [hfygr667789].’

Oxford Journals will deposit all NIH-funded articles in PubMed Central. See http://www.oxfordjournals.org/for_authors/repositories.html for details. Authors must ensure that manuscripts are clearly indicated as NIH-funded using the guidelines above.

Crossref Funding Data Registry

In order to meet your funding requirements authors are required to name their funding sources, or state if there are none, during the submission process. For further information on this process or to find out more about the CHORUS initiative please click here.

Acknowledgments

These should be included at the end of the text and not in footnotes. Personal acknowledgments should precede those of institutions or agencies.

References

This journal follows American Psychological Association Manual of Style (6th ed.) as a guide for style and citation. Authors are responsible for the accuracy of the references. Published articles and those in press (state the journal which has accepted them and enclose a copy of the manuscript) may be included. In the text, a reference should be cited by author and date. Not more than six authors may be cited per reference; if there are more than six authors, use et al in the in-text parenthetical citation.
At the end of the manuscript, the citations should be typed in alphabetical order, with the authors’ surnames preceding initials. References should include, in the following order: authors' names, year, complete title of the article, journal title, volume number, inclusive page numbers, and (for books only) name and address of publisher. The name of the journal should be italicized and appear in full. References will appear in type as below:

Personal communications (J Jones, personal communication) must be authorized in writing by those involved, and unpublished data should be cited as (unpublished data). Both should be used as sparingly as possible and only when the unpublished data referred to is peripheral rather than central to the topic under discussion. References to manuscripts in preparation or submitted, but not yet accepted, should be cited in the text as (B Jones and L Smith, in preparation) and should NOT be included in the list of references.

Tables

Tables should be typed on separate sheets and numbered consecutively with numbers (i.e., Table 1, Table 2, etc). Tables should be self-explanatory and include a brief descriptive title. Tables can include note(s) that appear below the table. Note(s) usually include full definitions of abbreviations that appear in the table. Footnotes are also acceptable and are indicated by lowercase letters. But
footnotes should not include extensive experimental detail. Tables must be called out in the text.

Illustrations

Wherever possible, black and white figures should be submitted in their desired final size, to fit the width of a single page (i.e., 6.5 inches wide). Any text or lettering should be at least 14 points in size and should be in proportion to the overall dimensions of the drawing. The captions for figures should be typed on a separate sheet of paper, and figures must be called out in the text.

Please consult our online submission guidelines for instructions on preparing illustrations for online submission and review. Final files must be submitted at or before acceptance according to the following guidelines. Save figure files in TIFF or EPS format, using CMYK colors, with fonts embedded. For EPS submissions, please use the following fonts only: Arial, Courier, Times New Roman, Helvetica, and Symbol. Upon acceptance, submission of figures as hard copy is also acceptable.

Halftone illustrations, photographs. These should be of sufficiently high quality with respect to detail, contrast, and fineness of grain to withstand the inevitable loss of contrast and detail inherent in the printing process. Please indicate the magnification by a bar on the photograph. These illustrations must have a resolution of at least 300 dots per inch at their final size.

Line drawings. These should have clear and sharp lines. No additional artwork, redrawing, or typesetting will be done. Therefore, all labeling should be done on the original line drawing. Faint shading and stippling will be lost upon reproduction and should be avoided. Line drawings must have a resolution of at least 1200 dots per inch at their final size.
Figure legends

These should be on a separate, numbered manuscript sheet. Define all symbols and abbreviations used in the figure. Figures and legends should be intelligible without reading the text of the manuscript.

Abbreviations

Try to restrict the use of abbreviations to those listed in the American Psychological Association Manual of Style (6th ed.) and to those abbreviations that appear as word entries in Merriam-Webster’s Collegiate Dictionary. Any word you intend to abbreviate should be spelled out at first occurrence. The first spelled out occurrence should be followed by the abbreviation in parenthesis. Standard units of measurement may be used without definition in the body of the paper. Acronyms formed from phrases are unacceptable.

LANGUAGE EDITING

International authors submitting manuscripts to ARCLIN who desire assistance with statistical consulting and English language editing may take advantage of the free services offered through the Research and Editing Consulting Program (RECP) within the International Neuropsychological Society's International Liaison Committee by contacting Mary Beth Spitznagel, Ph.D., by e-mail: mspitzna@kent.edu

Language editing, if your first language is not English, to ensure that the academic content of your paper is fully understood by journal editors and reviewers is optional. Language editing does not guarantee that your manuscript will be accepted for publication. For further information on this service, please click here. Several specialist language editing companies offer
similar services and you can also use any of these. Authors are liable for all costs associated with such services.

SUBMISSION OF MANUSCRIPTS

Authors should submit manuscripts electronically at http://mc.manuscriptcentral.com/arclin.

Submission of a paper implies that it reports unpublished work and that it is not under consideration for publication elsewhere. If previously published tables, illustrations, or more than 200 words of text are to be included, then the copyright holder's written permission must be obtained. Copies of any such permission letters should be faxed to Oxford University Press, Archives of Clinical Neuropsychology, at +44 (0) 1865 355939 immediately upon the paper's acceptance, referencing the manuscript number assigned by the online submission Web site.

Manuscripts submitted will receive a blind review by at least two editorial consultants. Therefore, the cover page alone should contain any information relevant to the authorship of the manuscript. Authors should ensure that the paper itself contains no footnotes or statements which allow the reviewer to identify the author.

Brief reports will receive the same blind review as other manuscripts. However, due to the fact that they represent a replication or a specialized topic, the paper will not be accepted as a regular article. Authors must be willing to make an extended report of the manuscript available to readers upon request.

Preparing the files

When preparing your final files, please present all sections of the paper in one word-processing file, excluding illustrations. If necessary, tables may be placed in a separate word-processing file.
When creating and/or editing your manuscript, use the document mode (or equivalent) in the word-processor program.

Type the title, authors, and affiliations in the journal style (i.e., in upper and lowercase), with **bold font** for the title and authors.

The text should be typed **unjustified**, **without hyphenation** (except for compound words) and **at double line spacing**.

Headings should be typed as follows: main (section) headings in bold upper and lowercase; subheadings in italic upper and lowercase letters with the text beginning on the next line; sub-subheadings in italic upper and lowercase letters with the text continued on the same line.

Indexing flags should **not** be included in the text.

Enter only **one** space at the end of sentences and after commas, semicolons, and colons. No space should be inserted before these punctuation marks.

Do not use lowercase **l** (ell) for 1 (one) or **O** for 0 (zero). These may look interchangeable but they have different electronic values.

Check the final copy of your paper carefully because spelling mistakes, inconsistencies, and errors will be faithfully translated into the typeset copy.

SUPPLEMENTARY DATA

Supplementary data can be made available by the publisher as online-only content linked to the online manuscript.

Definition

Supplementary data is supporting material that cannot be included in the printed version for reasons of space and is not essential for inclusion in the full text of the manuscript but would nevertheless benefit the reader. It should not be essential to understanding the conclusions of the paper but should contain data that is additional or complementary and directly relevant to the article content.
Examples

More detailed methods, extended data sets/data analysis, tables, or additional figures (including color).

It is standard practice for appendices to be made available online-only as supplementary material. All text and figures must be provided in suitable electronic formats. All material to be considered as supplementary material must be submitted at the same time as the main manuscript for peer review. It cannot be altered or replaced after the paper has been accepted for publication, and will not be edited. Please indicate clearly the material intended as supplementary material upon submission. Also ensure that the supplementary material is referred to in the main manuscript where necessary, for example as "(see Supplementary Material)" or "(see Supplementary Figure 1)."

Process

All material to be considered as supplementary data must be submitted at the same time as the main manuscript for peer review. Please indicate clearly the material intended as supplementary data upon submission. On the Title Page of the submitted manuscript indicate that supplementary data is included and list the items. Also ensure that the supplementary data is referred to in the main manuscript at an appropriate point in the text. It must be supplied to the production department with the article for publication, not at a later date. It cannot be altered or replaced after the paper has been accepted for publication.

Files for supplementary data should be clearly marked as such and be accompanied by a summary of the file names and types.

Please note that supplementary data will not be copyedited, so ensure that it is clearly and succinctly presented and that the style of terms conforms with the rest of the paper. Also ensure that the presentation will work on any Internet browser.

Acceptable formats

A maximum of 5 files is acceptable to make up the supplementary data unit for an article. The maximum size per file should not exceed 2 MB (though text files
should be a great deal smaller), and files must be as small as possible so that they can be downloaded quickly. An HTML index page is usually created to link the supplementary data file(s) to the article. Please provide short (2-4 word) titles for each individual file—these will be used to create links to the files from the index page.

Recommendations

1. Pick a common cross-platform (PC, Mac, Linux/UNIX, etc.) format for your supplementary data to allow the greatest access for your readers.

2. Provide text files in portable document format (.pdf), Microsoft Word (.doc), HTML (.html), or rich text format (.rtf). Files supplied in Word or RTF may be used to create a PDF file.

3. Provide spreadsheet files in Microsoft Excel (.xls) or CSV (.csv) format.

4. Provide image files as tagged image format (.tif), graphic image format (.gif), or JPEG (.jpg). Images should be a maximum size of 640 x 480 pixels (9 x 6.8 inches at 72 pixels per inch).

5. The most commonly accessible format for audio clips is .mp3. Though not recommended, QuickTime, RealMedia, and Windows Media file formats are also acceptable.

6. The preferred and most common format for movie clips is MPEG Movie (.mpg), though QuickTime Video (.mov) and Microsoft AVI Video (.avi) formats are also acceptable.

If you require further help or information regarding submission or preparation of supplementary data, please contact the production editor for *Archives of Clinical Neuropsychology.*
COPYRIGHT

It is a condition of publication in the journal that authors grant an exclusive license to Oxford University Press. This ensures that requests from third parties to reproduce articles are handled efficiently and consistently and will also allow the article to be disseminated as widely as possible. As part of the license agreement, authors may use their own material in other publications, provided that the journal is acknowledged as the original place of publication and Oxford University Press is acknowledged as the publisher.

Upon receipt of accepted manuscripts at Oxford Journals authors will be invited to complete an online copyright licence to publish form.

Please note that by submitting an article for publication you confirm that you are the corresponding/submitting author and that Oxford University Press ("OUP") may retain your email address for the purpose of communicating with you about the article. You agree to notify OUP immediately if your details change. If your article is accepted for publication OUP will contact you using the email address you have used in the registration process. Please note that OUP does not retain copies of rejected articles.

OPEN ACCESS OPTION FOR AUTHORS

Archives of Clinical Neuropsychology authors have the option to publish their paper under the Oxford Open initiative; whereby, for a charge, their paper will be made freely available online immediately upon publication. After your manuscript is accepted the corresponding author will be required to accept a mandatory licence to publish agreement. As part of the licensing process you will be asked to indicate whether or not you wish to pay for open access. If you do not select the open access option, your paper will be published with standard subscription-based access and you will not be charged.
Oxford Open articles are published under Creative Commons licences. Authors publishing in Archives of Clinical Neuropsychology can use the following Creative Common licence for their articles:

• Creative Commons Non-Commercial licence (CC BY-NC)

Please click here for more information about the Creative Commons licences.

You can pay Open Access charges using our Author Services site. This will enable you to pay online with a credit/debit card, or request an invoice by email or post. The open access charges applicable are:

Regular charge - £2200/ $3520 / €2860

Reduced Rate Developing country charge* - £1100 / $1760 / €1430

Free Developing country charge* - £0 /$0 / €0

*Visit our developing countries page (click here for a list of qualifying countries).

Orders from the UK will be subject to the current UK VAT charge. For orders from the rest of the European Union, OUP will assume that the service is provided for business purposes. Please provide a VAT number for yourself or your institution and ensure you account for your own local VAT correctly.

Please see these guidelines for reuse of Oxford Open content.

PROOFS

Authors are sent page proofs. To avoid delays in publication, proofs should be checked immediately for typographical errors and returned within 48 hours by email. Alternatively, you can fax the corrections to +44 (0) 1865 355939. Essential changes of an extensive nature may be made only by insertion of a Note added in proof. A charge will be made to authors who insist on amendment within the text at the page-proof stage. Excessive alterations may delay publication of the article to a subsequent issue.
The Publisher reserves the right to proceed with publication if corrections are not communicated within 2 days of receipt of the proofs. Should there be no corrections, please confirm this.

ADVANCE ACCESS

Advance Access allows for papers to be published online soon after they have been accepted for publication – reducing the time between submission and publication. Articles posted for Advance Access have been copyedited and typeset but not yet paginated for inclusion in a specific issue of the journal. Appearance in Advance Access constitutes official publication, with full-text functionality, and the Advance Access version can be cited by a unique DOI (Digital Object Identifier). The final manuscript is then paginated into an issue, at which point it is removed from the Advance Access page. Both versions of the paper continue to be accessible and citable.

AUTHOR SELF-ARCHIVING/PUBLIC ACCESS POLICY

For information about this journal's policy, please visit our Author Self-Archiving policy page.

PERMISSIONS FOR ILLUSTRATIONS AND FIGURES

Permission to reproduce copyright material, for print and online publication in perpetuity, must be cleared and if necessary paid for by the author; this includes applications and payments to DACS, ARS, and similar licensing agencies where appropriate. Evidence in writing that such permissions have been secured from the rights-holder must be made available to the editors. It is also the author's responsibility to include acknowledgements as stipulated by the particular institutions. Oxford Journals can offer information and documentation to assist authors in securing print and online permissions: please see the
Guidelines for Authors section. Information on permissions contacts for a number of main galleries and museums can also be provided. Should you require copies of this, please contact the editorial office of the journal in question or the Oxford Journals Rights department.

Third-Party Content in Open Access papers

If you will be publishing your paper under an Open Access licence but it contains material for which you do not have Open Access re-use permissions, please state this clearly by supplying the following credit line alongside the material:

Title of content

Author, Original publication, year of original publication, by permission of [rights holder]
This image/content is not covered by the terms of the Creative Commons licence of this publication. For permission to reuse, please contact the rights holder.

ETHICS

Oxford Journals, publisher of Archives of Clinical Neuropsychology, is a member of the Committee on Publication Ethics (COPE), and the journal strives to adhere to the COPE code of conduct and guidelines. For further information see http://www.publicationethics.org.uk.

Archives of Clinical Neuropsychology expects that authors will observe high standards with respect to publication ethics. For example, the following practices are unacceptable: (1) falsification or fabrication of data, (2) plagiarism, including duplicate publication of the authors' own work, in whole or in part without proper citation, (3) misappropriation of the work of others such as omission of qualified authors or of information regarding financial support. Allegations of unethical conduct will be discussed initially with the
corresponding author. In the event of continued dispute the matter will be referred to the author's institution and funding agencies for investigation and adjudication.
Anexo 4: Comunicação oral
Comunicação oral apresentada à reunião da Secção de Neurologia do Comportamento no dia 14/11/2018 no Palace Hotel, Porto.

O Test des Neuf Images 93

estudo preliminar de validade e dados normativos numa amostra Portuguesa de idosos com iliteracia e baixa escolaridade

Marta S. Couto *
J. Carlos Caldos *

* * IUC3 – Instituto Universitário de Ciências da Saúde
** * IINFACS – Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (membro integrado)
* * CINTESIS – Centro de Investigação em Tecnologias e Serviços de Saúde (membro colaborador)

Comunicação à Reunião da Secção de Neurologia do Comportamento
Palace Hotel, Porto
14/11/2018
Background

- Desafio avaliação neuropsicológica - despiste deterioração cognitiva/defeito cognitivo ligeiro/demência - ≥ 60 anos - iliteracia, iliteracia funcional ou nível baixo de escolaridade.

- Viés nos instrumentos comumente usados =>
 - Hiperestimar/ hiperdiagnosticar defeito cognitivo.

- Instrumentos comumente usados =>
 - Tarefas tipo "laboratório" ou "escolar"
 - Correlatos cognitivos iliteracia vs literacia mostra
 - Estratégias cognitivas qualitativamente diferentes
 - Diferenças funcionais e estruturais

Background (cont.)

- Soluções propostas:
 - Adaptação testes:
 - Eliminação itens e subtestes
 - Normas específicas
 - Alteração normas aplicação - sessões de treino
 - Novos testes com > validade facial e ecológica

Nossa estudo => teste não-verbal; *screening* rápido defeito cognitivo ligeiro/demência; não implica "escolarização"; memória episódica de objetos comuns(evocação livre e com pistas) – não afetada pela escolaridade.

Objetivo geral

Test des Neuf Images 93 (TNI-93)

- Validade convergente e divergente

- Dados normativos preliminares

- Efeitos idade, sexo, nível educacional
Método

- Amostra bola de neve (N = 115); idosos ≥ 60 anos; ambos sexos; sem queixas mnésicas; autónomos atividades de vida quotidiana.

- Instrumentos: **TNI-93, ACE III (Addenbrooke’s Examination III)**, **GDS-30 (Geriatric Depression Scale)**

- Análises estatísticas
 - Correlações TNI-93/ACE III (validade convergente) e TNI-93/GDS (validade divergente)
 - Mann-Whitney U e Kruskal-Wallis (diferenças género, idade, escolaridade)
 - Regressão Linear Múltipla (modelo preditivo resultados TNI-93)

TNI-93

1º Prova de Codificação

1.1. Com imagens: nome animal, meio transporte... ...
1.2. Sem imagens: nome animal, meio transporte... ...
1.3. Com imagens: itens em falta
1.4. Sem imagens: itens em falta: nome de... ...

2º Prova interferente (20º): contar para trás de 3 em 3 a partir 40 ou, dizer dias semana em ordem inversa (dom, sab,)...)

3º Recordação Livre

4º Recordação com Pistas (só para imagens não recordadas)

RESULTADOS

Recall Total = Recordação Livre + Recordação com pistas [Minº. = 0; Máxº. = 9]
Intrusões = Intrusões na Codificação + Intrusões na Recordação Livre + Intrusões na Recordação com Pistas
Resultados

Tabela 1: Informação demográfica

<table>
<thead>
<tr>
<th>Descrição</th>
<th>N</th>
<th>Percentagem</th>
<th>M</th>
<th>SD</th>
<th>Intervalo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idade (anos)</td>
<td></td>
<td></td>
<td>77,4</td>
<td>5,5</td>
<td>60-97</td>
</tr>
<tr>
<td>60-70 anos</td>
<td>26</td>
<td>24,3</td>
<td>65,5</td>
<td>60-70</td>
<td></td>
</tr>
<tr>
<td>71-80 anos</td>
<td>41</td>
<td>36,7</td>
<td>74,8</td>
<td>71-80</td>
<td></td>
</tr>
<tr>
<td>> 81 anos</td>
<td>46</td>
<td>40,0</td>
<td>85,6</td>
<td></td>
<td>81-97</td>
</tr>
<tr>
<td>Gênero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>41</td>
<td>26,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feminino</td>
<td>91</td>
<td>73,1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nível de educação (anos de estudo)</td>
<td></td>
<td></td>
<td>2,21</td>
<td>1,7</td>
<td>0-4</td>
</tr>
<tr>
<td>0-2 anos</td>
<td>48</td>
<td>41,7</td>
<td>0,3</td>
<td>0-2</td>
<td></td>
</tr>
<tr>
<td>3-4 anos</td>
<td>67</td>
<td>56,3</td>
<td>3,6</td>
<td>3-4</td>
<td></td>
</tr>
<tr>
<td>Residência</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casa</td>
<td>92</td>
<td>71,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residência</td>
<td>33</td>
<td>26,7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: M = média; SD = desvio padrão

Resultados

Tabela 2: Estatísticas descritivas e correlações entre TNI-93, ACE-III e GDS

<table>
<thead>
<tr>
<th>Testes de Índice</th>
<th>TNI-93</th>
<th>GDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ace-III</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total (T1)</td>
<td>M (SD)</td>
<td>r (p)</td>
</tr>
<tr>
<td></td>
<td>56,83 (15,1)</td>
<td>.381 (p<.001)</td>
</tr>
<tr>
<td>Atenção (At)</td>
<td>12,82 (2,85)</td>
<td>.302 (p<.001)</td>
</tr>
<tr>
<td>Memória (Mem)</td>
<td>13,55 (3,89)</td>
<td>.287 (p<.002)</td>
</tr>
<tr>
<td>Fluência (Fl)</td>
<td>5,49 (3,13)</td>
<td>.347 (p<.001)</td>
</tr>
<tr>
<td>Linguagem (Lg)</td>
<td>16,55 (4,70)</td>
<td>.369 (p<.001)</td>
</tr>
<tr>
<td>Visuais-Spatiais (VS)</td>
<td>8,43 (3,40)</td>
<td>.278 (p<.003)</td>
</tr>
<tr>
<td>TNI-93</td>
<td>8,36 (0,66)</td>
<td></td>
</tr>
<tr>
<td>GDS</td>
<td>11,48 (5,3)</td>
<td></td>
</tr>
</tbody>
</table>

Nota: M = média; SD = desvio padrão; r = correlação; p = nível de significância

Resultados

Tabela 3: Diferenças por grupos de idade, gênero e níveis de educação no TNI-93 total score (Kruskal-Wallis H e Mann-Whitney U)

<table>
<thead>
<tr>
<th>Grupo de Idade</th>
<th>N</th>
<th>M</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
<th>Intervalo</th>
<th>H(df) / U, p</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-70 anos</td>
<td>26</td>
<td>8,68</td>
<td>0,08</td>
<td>9,00</td>
<td>5-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>71-80 anos</td>
<td>41</td>
<td>8,39</td>
<td>0,08</td>
<td>9,00</td>
<td>6-9</td>
<td>3-8</td>
<td>N = 6,086(2), p = 0,48</td>
</tr>
<tr>
<td>> 81 anos</td>
<td>46</td>
<td>8,13</td>
<td>0,15</td>
<td>9,00</td>
<td>5-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gênero</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>41</td>
<td>8,41</td>
<td>0,04</td>
<td>9,00</td>
<td>5-9</td>
<td>U = 1,913, p = 0,474</td>
<td></td>
</tr>
<tr>
<td>Feminino</td>
<td>91</td>
<td>8,17</td>
<td>0,13</td>
<td>9,00</td>
<td>5-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nível de Educação (anos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0-2 anos</td>
<td>46</td>
<td>8,10</td>
<td>0,17</td>
<td>9,00</td>
<td>5-9</td>
<td>U = 1,901, p = 0,57</td>
<td></td>
</tr>
<tr>
<td>3-4 anos</td>
<td>67</td>
<td>8,54</td>
<td>0,79</td>
<td>9,00</td>
<td>5-9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: M = média; SD = desvio padrão; Min = mediana; df = graus de liberdade
Resultados

<table>
<thead>
<tr>
<th>Domain</th>
<th>Variable</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>T</th>
<th>p</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>R²</td>
</tr>
<tr>
<td></td>
<td>TNI-93 score</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.081</td>
<td>0.024</td>
</tr>
<tr>
<td></td>
<td>Age</td>
<td>-0.025</td>
<td>0.011</td>
<td>-0.216</td>
<td>-2.221</td>
<td>0.028</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Education</td>
<td>0.063</td>
<td>0.058</td>
<td>0.108</td>
<td>1.084</td>
<td>0.281</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender</td>
<td>-0.383</td>
<td>0.227</td>
<td>-0.159</td>
<td>-1.688</td>
<td>0.094</td>
<td></td>
</tr>
</tbody>
</table>

Note: R² = results variance; p = significance level

Resultados

Modelo regressão linear => extração equação preditiva resultado esperado ($R_{esperado}$) TNI-93, atendendo idade

$$R_{esperado} = 10,393 - 0,026 \times IDADE \text{ (em anos)}$$

e,

$$Resultado = (R_{bruto} - R_{esperado})/DP$$

Discussão

Resultados médios TNI-93 (8.36) > que Dessi et al. (2009) (2.97) e semelhante a Maillet et al. (2016) (8.4 e 8.7).

Correlações TNI-93 / ACE-III (r = .278 - .381) => validade convergente fraca mas significativa.

Correlações TNI-93 / GDS => não-significativas e baixas, não confirmam validade divergente => baixo nível escolaridade.

Resultados TNI-93 influenciados idade (Dessi et al. (2009) e Maillet et al. (2016)), mas não escolaridade e sexo => media anos escolaridade baixa ($M = 2.21$; Mín 0 – Máx 4); e/ou teste "education free").

Regressão linear múltipla => obtenção equação normativa baseada idade.

Estudos futuros => avaliação Sensitividade/ Especificidade/Poder preditivo positivo e negativo/ Ponto de corte, em contextos clínicos.

J. Carlos Caldeira
Obrigado pela vossa atenção

AGRADECIMENTOS (colaboração)
Ana Lidia – Neuropsicóloga - Unidade Local de Saúde do Alto Minho
Bruno Peixoto – Neuropsicólogo – CESPU/Instituto Universitário de Ciências da Saúde
Didier Mailllet – Neuropsychologue - Unité fonctionnelle Mémoire et Maladies Neurodégénératives, Service de Neurologie, CHU Avicenne (AP-HP), Bobigny
F-93009, France Laboratoire PSITEC EA 4072, UFR de Psychologie Université de Lille Pont de Bois
Élia Baeta – Médica neurologista – Unidade Local de Saúde do Alto Minho
Anexo 5: Errata
Errata

- Na página 23, onde se lê “(...) (varying between r = .278 to .369 and p ≤ .001 to .002) ”, deve ler-se “(...) (varying between r = .278 to .369 and p ≤ .001 to .003) ”;

- Na página 36, onde se lê “(...) mostraram-se inferiores às pontuações do estudo de Machado et al. (2005).”, deve ler-se “(...) mostraram-se inferiores às pontuações do estudo de Machado et al. (2015).”;

- Na página 36, onde se lê “(...) Quero dizer com isto que no estudo de Machado et al (2005) a média”, deve ler-se “(...) Quero dizer com isto que no estudo de Machado et al (2015) a média”;

78