

Bond strength of endodontic post to resin cements using a push-out test: an integrative review

Patrícia Lopes de Souza

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Gandra, 27 de Setembro de 2020

Patrícia Lopes de Souza

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Bond strength of endodontic post to resin cements using a push-out test: an integrative review

Trabalho realizado sob a Orientação de Dr. Júlio César Matias de Souza

Declaração de Integridade

Eu, acima identificado, declaro ter atuado com absoluta integridade na elaboração deste trabalho, confirmo que em todo o trabalho conducente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele). Mas declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.

Declaração:

Eu, Doutor Júlio César Matias de Souza, com a categoria profissional de Professor Auxiliar Convidado do Instituto Universitário de Ciências da Saúde, tendo assumido o papel de Orientador da dissetação intitulada *"Bond strength of endodontic post to resin cements: a integrative review"*., da Aluna do Mestrado Integrado em Medicina Dentária, Patrícia Lopes de Souza, declaro que sou de parecer favorável para que o Relatório Final de Estágio possa ser presente ao Júri para admissão a provas conducentes para obtenção do Grau de Mestre.

Gandra, 27 de Setembro, de 2020

0 Orientador

Júlio César Matias de Souza

Agradeço primeiramente às minhas filhas Giovanna e Giullia, razão maior do meu viver e motivo principal por eu estar nessa jornada, a compreensão pelos momentos que não pudemos partihar devido ao tempo despendido na realização desse trabalho, hei de compensar-vos.

Ao meu orientador Doutor Júlio César Matias de Souza pela orientação prestada e disponibilidade, aqui expresso minha gratidão.

À minha familia pelo apoio incondicional, pelo incentivo e palavras de força nos momentos difícies, em especial, minha mãe Lucinda Lopes e minha tia Albina Lopes que de forma inestimável ajudaram-me e sem as quais tudo seria muito mais difícil.

A Áurea Correa, sempre presente, com um sorriso, uma palavra amiga, iluminando os dias mais escuros com seu astral, responsável pelas melhores memórias que terei desse ano de 2020, foi muito mais que uma binômia foi uma irmã e carregarei sempre em meu coração para a vida (ainda vamos rir de tudo isso!).

Não posso deixar de agradecer aos amigos que fiz (grupo de brasileiros), do qual tive a honrra de fazer parte e poder estar inserida em um ambiente de acolhimento, ajuda e reflexão. Onde demos muita risada e partilhamos momentos de angustia juntos, sempre um ajudando o outro.

Consciente que sozinha nada disto teria sido possivel, dirijo um agradecimento especial ao meu marido Luiz Paulo, por estar ao meu lado sempre prestativo, solícito, atento, com paciência e compreensão, provando mais uma vez que a base da nossa relação é o amor e o respeito. Agradeço as noites e fins de semana despendidos em prol da elaboração dessa dissertação que é mais um passo em direção ao nosso futuro. Há de valer a pena.

Resumo:

O objetivo principal desse estudo foi realizar uma revisão sistemática integrativa sobre a retenção de pinos de fibra a partir de testes push-out. A busca foi realizada na PUBMED (via National Library of Medicine) sobre artigos publicados até fevereiro de 2020 onde foi utilizado a aplicação das seguintes combinações de termos de busca: "intracanal post" OR "endodontic post" OR "root canal post" OR "intraradicular post" AND "resin cement" AND "adhesion" OR "bond strength" OR "shear bond strength" OR "pull out" OR "push out".

Os resultados dos estudos selecionados mostram a maior resistência de união ao push-out (22,5 MPa) entre pinos intracanais, parede dentinária e ao cimento de matriz resinosa em um pino com superfície pré-tratada de fábrica pelo processo de deposição de vapor de silano e silicato. Outro estudo mostra que, uma modificação da superfície por ataque químico com peróxido de hidrogênio e deposição de silano forneceu valores de resistência de união ao push-out de 21.5 Mpa . As superfícies não tratadas apresentaram os menores valores de resistência de união, em torno de 5 a 9 MPa. As análises de superfície dos pinos intracanais radiculares dos dentes mostraram um aumento da rugosidade após o jateamento e o condicionamento que promovem um intertravamento mecânico do adesivo e cimentos de matriz resinosa.

O tratamento combinado das superfícies do pino intracanal da raiz dos dentes por métodos físicos e químicos promove o aumento da rugosidade e da afinidade química antes da cimentação. Isso resulta em um alto embricamento mecânico dos cimentos de matriz resinosa e retenção estável dos pinos intracanais da raiz dos dentes.

Palavras-chave: "pino intracanal"; "cimento resinoso"; "adesão"; "força de adesão" e "pushout".

Abstract :

The main aim of this work was to perform an integrative systematic review on the retention of glass fiber reinforced composite posts by push-out bond strength tests. A literature search was performed on PUBMED (via National Library of Medicine) on articles published up to February, 2020, using the following combination of search terms: "intracanal post" OR "endodontic post" OR "root canal post" OR "intraradicular post" AND "resin cement" AND "adhesion" OR "bond strength" OR "shear bond strength" OR "pull out" OR "push out".

Results from the selected studies shows the highest push-out bond strength (22.5 MPa) of teeth root intracanal posts to resin-matrix cements over a factory pré-treated surface post by physical vapor deposition process of silane and silicate. In another study, a surface modification by etching with hydrogen peroxide and silane deposition provided push-out bond strength value of 21.5 MPa. Non treated surfaces showed the lowest bond strength values of around 5 to 9 MPa. Surface analyses of the teeth root intracanal posts showed an increase in roughness after grit-blasting and etching that promote a mechanical interlocking of the adhesive and resin-matrix cements.

The combined treatment of teeth root intracanal post surfaces by physical and chemical methods promote the increase in roughness and the chemistry prior a cementation. That results in a high mechanical interlocking of the resin-matrix cements and stable retention of the teeth root intracanal posts.

Key words: Intracanal post, resin cement, adhesion, bond strength and push out.

TABLE OF CONTENTS:

1.	11	NTRODUCTION	1
2.	N	METHOD	2
3.	R	RESULTS	3
4.	D	DISCUSSION:	18
4	4.1.	. Teeth root intracanal posts	18
4	4.2.	. Resin-matrix cements for endodontic post retention:	20
4	4.3.	. Adhesion of fiber-reinforced composite posts	21
5.	С	Conclusion	
6.	R	REFERENCES	

1. INTRODUCTION

The clinical procedures of the tooth root canal directly affects the prognosis of the dental restorative materials and tooth structures (1) . After endodontic treatment, the geometrical features and mechanical performance of remnant tooth tissues are often reestablished by post-retained restorations. However, the decision on teeth root intracanal post placement is mainly based on the extent of remnant tooth tissues (2). Although high success rates have been reported for glass fiber-reinforced composite (GFRC) post restorations, root fracture and loss of retention are still the most common reasons for failing these restorations(3,4). Teeth root canal treatments results in a weakening of the tooth, leading to damage of remnant tooth tissues and a high susceptibility to fracture(2,5,6). That increased the failure rates of tooth root intracanal posts. It has been estimated that 60% of the GFRC post failures occurred between the fiber post and resin-matrix cements(4). Failures may occur by several factors such as: (i) the type of resin-matrix cement used (dual or self-etching adhesive) (2,7-9); (ii) inherent polymerization shrinkage of resin-matrix cements, and the high C factor of root canals (2,10); (iii) anatomical complexity of the root canal itself (e.g. curvatures)(7,11,12); (iv) thickness and volume of remnant tooth tissues(11); (v) surface treatment of the tooth root intracanal posts (3,10,13,14).

Teeth root intracanal fiber post systems are composed of an epoxy resin matrix, which is reinforced with carbon or glass fibers. Glass fiber posts consist of around 60wt% glass fibers, which are embedded in a methacrylate- or epoxy resin matrix (about 35wt%) (4,10,12,14,15). The main components of the glass-based fibers are silicon oxide (50–60wt%) as well as calcium, boric, sodium, and aluminum oxide (4,10,12,14,15). The application of GFRC posts for restoring endodontically treated teeth with the loss coronal tooth structure has proved to be effective (2,13,14). GFRC posts in combination with resinmatrix cement and restorative resin-matrix composite materials can form a structurally and functionally homogeneous complex with root (2,10,14,16). Several surface treatment protocols (chemical and micro-mechanical modifications) have been reported to improve surface energy of GFRC posts to resin-matrix cements such as: grit-blasting, silanization, etching, and laser irradiation (1,4,5,12,17). Previous studies concluded that roughening the

GFRC surface either with micro-mechanical methods like sandblasting or application of hydrogen peroxide can improve the retention of the posts through the tooth root canal (4,8,18).

Tooth tissues namely enamel, dentin and cementum can reveal very different properties and morphological aspects of surfaces (2,17). Over the past years, the adhesion of fiber posts luted with simplified adhesive systems has been a matter of great interest(9). The retention of endodontic posts into the teeth root canal is dependent on the mechanical interlocking of the adhesive and the resin-matrix cements through the micro-scale irregularities on the surfaces of the endodontic post and intracanal dentin (1,5,17). The retention of GFRC posts is a fine procedure regarding the resin-matrix cement should have the capability of bonding to three different surfaces: GFRC, tooth tissues, and the restorative material(17). Even though the surface pretreatment, failures of GFRC posts frequently result in debonding or fracture since the resin-matrix-cement is the weakest spot of the interface (5,10,14,19).

The objective of this work was to perform an integrative systematic review on the retention of glass fiber reinforced composite posts by push-out bond strength tests. It was hypothesized that the surface conditions of tooth root intracanal posts and type of resin matrix cements play a key role on the long-term strength of the endodontic interfaces.

2. METHOD

A literature search was performed on PUBMED (via National Library of Medicine) using the following combination of search terms: "intracanal post" OR "endodontic post" OR "root canal post" OR "intraradicular post" AND "resin cement" AND "adhesion" OR "bond strength" OR "shear bond strength" OR "pull out" OR "push out". The inclusion criteria involved articles published in the English language, up to February 2020, reporting the bond strength of endodontic post to resin cements. Two of the authors (JCMS, CMTZ) independently analyzed the titles and abstracts of potentially relevant articles. The eligibility inclusion criteria used for article searches also involved: articles written in English; metaanalyses; randomized controlled trials; and prospective cohort studies. The total of articles

was compiled for each combination of key terms and therefore the duplicates were removed using Mendeley citation manager. A preliminary evaluation of the abstracts was carried out to establish whether the articles met the purpose of the study. Selected articles were individually read and evaluated concerning the purpose of this study. The following factors were retrieved for this review: authors' names, journal, publication year, purpose, type and properties of resin cement, and bond strength.

3. RESULTS

The literature search identified a total of 75 articles on PubMed, as shown in Fig. 1. After reading the titles and abstracts of the articles, 13 were excluded because they did not meet the inclusion criteria. At last, 20 articles were selected for the present review.

Of the 20 selected studies, 12 (60%) investigated the effect of the surface treatment on push-out bond strength of posts to resin cements, while 15 (75%) addressed the surface conditioning of dentin wall (smear layer handling). The influence of the resin cement on the bond strength of posts were investigated by 8 (38.8%) articles. One article (4.76%) investigated the of effects of post dimensions, while the remaining article (4.76%) focused on cement application techniques. Twelve of the push-out tests were carried out at the same speed (0.5mm/min), while the remaining 8 were assessed at 1mm/min speed. Concerning slice dimensions, eleven studies opted for 1mm slices, 5 studies were performed on 2mm slices. A previous study was performed at three different slice thickness: 1.5, 1.7, 2, 3, and 4mm. Within 10 studies, specimens were harvested from cervical, middle, and apical sections of the root, 1 studies assessed the slices from cervical and apical regions, while in 9 studies tested multiple slices from the entire root, and obtained the mean value. Seventeen articles analyzed self-etch adhesives, that reveals the clinical importance of such adhesive system in operative techniques. However, three studies assessed etch and rinse adhesives.

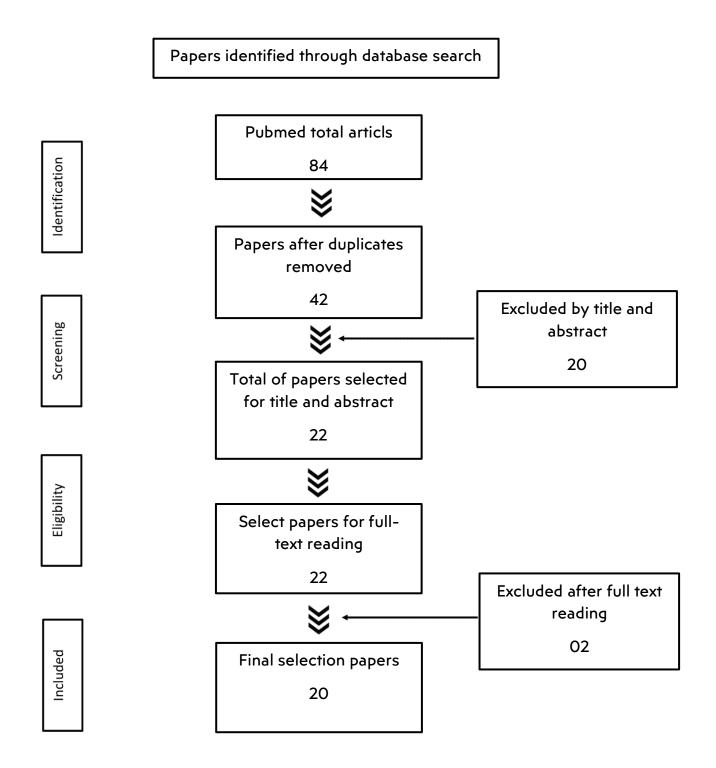


Figure 1. Flow diagram of the search strategy used in this study.

Table 1. Relevant data gathered from the retrieved studies.

Author (YEAR)	Purpose	Endodontic post	Resin-matrix cement	Mechanical and microstructural Analisis		Main ou	ıtcomes	
Uzun I, Keskin	In vitro study to	(type/surface) Type: oval and circular fiber	Adhesion procedure Lasered group Er-YAG:	Apparatus:	Push -out resi	ulte:(MPa)		
C, Özsu D,	evaluate the effect	posts	Oval and Circular were irrigated	Instron Universal test	GROU		CERVICAL	APICAL
Güler B,	of Erbion-doped	Surface: none	15 sec. With Er:YAG laser system(machine; Elista	Lased circ		8.821	7.051
Aydemir H	Yttrium aluminum	Surface. Hone	Doctor Smile Lambda Scientifica)	Speed:0,5 mm/min	Lased or		11.071	9.016
Ayocimi n	garnet (Er: YAG)		The luting protocol were the	Slice: f 1mm,	Non lased c		7.031	6.047
2016	laser treatment of		same for all groups , the cement	Microscope (Carl Zeiss jena			9.057	8.023
2010	dentinal walls on		RelyX Unicem, (3M ESPE),	GmbH) at x10 magnification	Non lased	IPAD	9.057	0.023
	the bond strength		photoactivated with LED	Failure predominance:	Dra traatmaat	with locos is		th out bood
	of circular and		polymerization light (Elipar S10,	Mix	Pre-treatment		• •	
	oval fiber post		3M ESPE)		strength comp		5 1	
	luted in oval canal		5111 251 27		Oval post with			
					than circular p	-	with conver	itional drills in
Deseise ID Lies	Fueluete the even	Turan Class Fiber spinforred	(Daly X lution Lution and Linion	A	coronal region: Push -out Mea		<u>المع</u>)،	
Pereira JR, Lins	Evaluate the push-	Type: Glass Fiber reinforced		Apparatus:	Push -out Mea	n results:(n	vipa):	
Do Valle A,	out bond strength	post with parallel walls and	Ketac Cem, Rely X ARC, Biscem,	A universal testing machine				A
Ghizoni JS,	of glass fiber posts	tapered tip (Reforpost No. 2;		(DL-1000; EMIC, São José	Group	Cervical	Middle	Apical
Lorenzoni FC,	cemented with	Angelus Destal Destudios	Rely X U100, and Variolink II)	dos Pinhais, Brazil)	1	18.0	16.9	19.5
Barbosa MR,	different	Dental Products, Londrina,			2	8.2	10.3	12.8
Dos Reis Só	luting agents on 3	Brazil)	GROUP 1: Luting and Lining:	Speed: 0,5mm/min	3	12.0	18.6	17.0
MV	segments of the	Surface: silane (scotchbond	GROUP 2: Rely X luting	Slice: 1 mm	4	17.5	15.4	17.5
2012	root.	ceramic primer; 3M ESPE)	GROUP 3: Ketac Cem:		5	13.6	14.2	12.5
2013			GROUP 4: Biscem:		6	11.5	6.1	3.1
			GROUP 5: Rely X U100:		7	8.4	4.8	0.9
			GROUP 6: Duo-link:		8	4.6	1.6	1.0
			GROUP 7: Rely X ARC: GROUP 8: Variolink II:			cantly highe	r values con	omer cements npared to dual-

					cements provic Significant diffe found only for	ded significar erences amo Duo-link cerr	ntly lower b ng root seg nent .	5
Leme AA,	Evaluate the	Type: Fiber post	Self-adhesive RelyX Unicem (#M	Apparatus:	Push -out Mea	n results:(M	IPa)	
Pinho AL, de	effects of different	Surface:G1: RelyX Ceramic	ESPE).	A universal testing machine				
Souza	glass-fiber post	primer (silane), G2: silane and	Composition: Methacrylate	(model 4411, Instron;	Group	Cervical	Middle	Apical
Gonçalves L,	surface	solobond M, G3: silane and	monomers containing phosphoric	Canton, MA, USA)	CONTROL	2.39	2.78	2.92
Correr-	treatments on the	Scotchbond adhesive, G4:	acid groups, methacrylate		1	9.65	4.11	4.04
Sobrinho L,	bond strength to	Silane and Excite (lvoclar)	monomers, initiator, stabilizers	speed : 0,5 mm/min	2	11.21	4.53	4.38
Sinhoreti MAC.	root dentin.				3	11.23	5.96	5.12
2012				slice: 1mm	4	9.43	5.26	5.26
2013				Scanning electron microscopy (SEM) (JEOL,	The bonding of	f the self-adf	nesive resir	cement to the
				JSM-5600LV; Tokyo, Japan).	glass-fiber pos	st was impro	ved by app	lication of the
				Failure predominance:	silane couplin	g agent on	the post	surface. The
				1º: adhesive between	application of	an additiona	l adhesive	layer between
				dentin/cement	the fiber post	and resin c	ement did	not have any
				2º: mix	influence on	the bond st	rength wh	nen the silane
					coupling was p	reviously use	ed.	
Mosharraf R,	Evaluate the effect	Type: Glass reinforced fiber	Adhesive composite resin cement	Apparatus:	Push -out resu	lts:(MPa):		
Ranjbarian P.	of different	post (Hetco fiber post, Hakim	(Panavia F2.0, Kuraray Medical	A universal testing machine				
	surface	Toos, Mashhad, Iran)	Inc., Japan)	(Walt + Bai AG Testing	Group	Cervical	Middle	Apical
2013	conditioning on	Surface:	root canal dentin walls were	Machines Industriestrass 4,	1	21.54	19.09	9.12
	tensile bond	$\underline{GROUP} 1: \underline{H_2O_2} + \underline{Silane}:$	conditioned with an auto	Löhningen, switzerland)	2	18.45	10.17	6.55
	strength (TBS) of a	(Ultradent Porcelain Etch and	polymerizing primer (ED primer,	Speed : 1mm/min	3	20.53	14.57	6.30
	glass fiber	Silane, Ultradent Products	Kuraray Medical Inc., Tokyo,	Slice: 3mm	CONTROL	9.76	9.08	5.58
	reinforced post to	Inc., UT, USA)	Japan)					
	resin cement.	<u>GROUP 2: Sandblast + Silane</u> .:			Different surfa	ce treatmen	ts and roo	ot canal dentin
		50 µm aluminum oxide			regions had s	significant ef	fects on	Tensile Bond
		particles + a single layer of			Strength (TBS), but inter	action be	tween surface
		the silane coupling agent						

Šimundić Munitić M,	Evaluate the influence of laser	(Ultradent Porcelain Etch and Silane) <u>GROUP 3: Silane</u> .: only a single layer of the silane coupling agent (Ultradent Porcelain Etch and Silane) Type : Fiber-reinforced composite post.	Self-adhesive resin cement (Speed CEM)	Apparatus : Universal testing machine (AGS-	treatments and root canal re effects on TBS. The H_2O_2 + Silane Group had value especially in the corona mean value was seen in the apical region. Push -out Mean results:(MP	the highest TBS mean I region. The lowest TBS control group and in the
Bago I,	activated irrigation	Surface: Silanized (Monobond	Polimerized by 60 sec.	10knd; shimadzu Co., Kyoto,	GROUP	MEAN
Glockner K,	by Er: YAG and Er:	plus, Ivoclar Vivadent)		Japan)	Needle+saline	0.737
Kqiku L, Gabrić	YSGG (LAI)			Speed: 0,5 mm/min	Nd: YAG	0.868
D, Anić I.	protocols and Nd:			Slice: 1mm	PIPS+QMix	3.401
	YAG laser			Stereomicroscope (Olympus	Er: YSGG+Qmix:	0.919
2017	irradiation on the			SZX10; DF PL1.5, Hamburg,	PIPS+saline	1.094
	bond strength of			Germany) at 20x	Er,Cr: YSGG+saline	1.111
	self adhesively cemented fiber posts to root canal dentin			magnification Failure predominance: 1°: adhesive between dentin/cement 2°: adhesive between post/cement	Highest bond streng photoacoustic streaming (Pl laser activated irrigation (LA saline solution, which did not	PS) +QMix, followed by) Er, cr:YSGG and PIPS +
Tuncdemir AR,	Evaluate the effect	Type : quartz fiber posts (D. T.	Self-curing adhesive cement	Apparatus:	Push-out Mean results(MPa	:
Buyukerkmen	of different Post	LIGHT-POST,	(Multilink Automix, Ivoclar,	A universal testing		
EB, Celebi H,	Surface treatment	Bisco, USA). radiopaque	Vivadent, Liechtenstein)	machine (AGS-X, Schimadzu	GROUP	MEAN
Terlemez A,	techniques on the	translucent fiber post with		Corp., Kyoto, Japan)	SANDBLASTING	4.14
Sener Y.	push-out bond strength of the	unidirectional 60% glass fibers embedded		Speed: 1.0 mm/min	CONTROL	3.36
2018	quartz fiber posts	in an epoxy resin matrix		Speed. 1.0 mm7 mm	LASER	3.16
2010		Surface: • Group 2: A 50-µm aluminum-oxide (Al2O3)		Slice: 1mm Scanning electron	Push-out test values differed to the post surface trea airborne-particle abrasion gr	atment system. Al2O3
		airborne-particle		microscope X200		

		• Group 3: FS laser. FS laser pulses from an amplifier (Integra-C3.5; Quantronix, New York, USA)		Failure predominance: 1º: adhesive between post/cement 2º: mix	FS laser group quartz fiber po Push-out bond were the same A 500 mW/pu 1250, and a 10 applied on qua	osts d strength va e in all groups lse and mach kHz repetitio ortz fiber posi	ulues of the s. ning speed 3 on rate FS ir ts negative	root segmen 30, skip speed radiation affect on
Amiri EM, Balouch F, Atri	Compare the effect of self-	Type : fiber glass post Surface : Z primer plus (Bisco	Group 1: self-adhesive cement (rely X Unicem, 3M).	Apparatus: Zwick Roell, Uim, Germany	push-out bond Push -out Mea	-		iffaces.
F.	adhesive and	Dental)	Group 2: separate etch adhesive	Speed : 1mm/min	Group	Cervical	Middle	Apical
	separate etch		cement (Duo-Link cement, Bisco	Slice:4mm	1	5.7	7.2	9.6
2017	adhesive dual cure resin cements on		dental). 37% phosphoric acid for 15 sec.+All Bond 2 (Bisco Dental,		2	14.0	10.9	7.0
	the bond strength of fiber post to dentin at different parts of the root		Schaumburg		Bond strength at group 1 Bond strength	-		
Druck CC eoli., Bergoli CD	To evaluate the effect of fiber post	Type : Fiber post (White Post DC, FGM, Joinvile, SC, Brazil)	Three step 'etch & rinse' adhesive system (Scotchbond multi-	Apparatus: A universal testing machine	Push -out Mea	an results:(N	1Pa):	
almoli., Pereira	surface	Surface:	purpose plus, 3M ESPE, St Paul,	(DL 2000, Emic, São Jose	(GROUP		MEAN
GK ali. R,	treatments	1) silane (Prosil, FGM, Brazil)	USA).	dos Pinhais, Brazil)		Cem + Sil		9.5
Valandro LF	on push-out bond	2) air-abraded with 30 µm	Composition:		A	RC + Sil		8.3
elip.	strength between	aluminum oxide particles	RelyX ARC Etchant: 35% H3PO4	Speed: 1 mm/min	-	em + TBS		6.9
2015	fiber post and root	modified with silica (Cojet	Adhesive: Bis-GMA, HEMA, UDMA,			RC + TBS		6.6
2015	dentin.	Sand, 3M	dimethacrylates, ethanol, water,	Slices 2mm		+ untreated		7.5
		ESPE, St Paul, MN, USA) and	canphorquinone, photoinitiators,	optical microscope	AllCen	n+untreated		6.0
		the silane coupling agent (ProSil, FGM, Brazil)	polyalkenoic acid copolymer, 5- nm silica Particles Cement:Bis-GMA, TEGDMA polymer, zirconia/silica filler, AllCem Bis-GMA, BIS-EMA,	(Olympus, BX60M, Japan) with 200x magnification scanning electron microscopy	AllCem+untreated6.0Post surface conditioning had a significant infl on bond strength values , but that the resin co did not In teeth restored with fiber posts, the cert			e resin cem

			TEGDMA, photoinitiators (canphorquinone e dibenzoyl peroxide), barium-aluminum- silica glass particles, and SiO2 nano-particles Prosil (FMG): 3methacryloxypropyltrimethoxysi lane, ethanol, water <u>Cojet (3M ESPE</u>): aluminum oxide particles coated by siliceous dioxides	(JEOL-JSM-5400, Jeol Ltd, Tokyo, Japan) Scanning electron microscopy (JEOL-JSM- 5400, Jeol Ltd, Tokyo, Japan) Failure predominance: 1°: adhesive between dentin/cement 2° adhesive between post/cement	dentin interface ap failure, while different po have little influenc The tested fiber po not influence the f	ost surfac e on bond osts surfac	e treatme I behavior. ce treatm	ents appear to ent appears do
Kivanç BH,	Assess the post	Type : glass fiber post (RelyX	G2: total-etch adhesive resin	Apparatus:	Push -out Mean re	esults:(MF	Pa):	
Arisu HD,	retentive potential	Fiber Post).	(Adper Single	universal testing machine	000110			
Üçtaşli MB,	of a self-adhesive		Bond 2	(Autograph AG-10kNIS,	GROUP	MEA		MEAN
Okay TC.	resin cement using		G3: A two-step self-etch adhesive resin (Clearfil SE Bond	Shimadzu Co., Kyoto, Japan) Speed: 0,5mm/min—1	DahvYllaisaan	1 WE		3 MONTHS
2013	different adhesive		G4: A one-step self-etch adhesive	Slice : 1,5 mm	RelyXUnicem	3.7		5.16
2013	systems to		resin (Clearfil S3	Stereomicroscope (Olympus	Single Bond	6.7		6.50
	compare the		Bond)	S 240, Tokyo, Japan) at ×40	Clearfil SE	5.3		9.63
	push-out bond		In all groups, self-adhesive	magnification	Clearfil S3	7.2		5.12
	strengths of fiber posts		resin cement (RelyX Unicem) was used for luting the posts.	Failure predominance: Mix	Dentin bond streng Single Bond, the Clearfil S3 Bond, th Unicem remained the two-step self-e increased with tim	one-step e self-adh stable an etch adhes	self-etch nesive resi Id the bor	adhesive resin n cement RelyX nd strengths of
Machado FW,	Evaluate the effect	Type: glass fiber – reinforced	Adhesive system (Scotchbond	Apparatus:	Push -out results:	(MPa):		
Bossardi M,	of different post	Surface:	Multipurpose Plus System) + The	A universal testing machine				
Ramos TDS,	surface	<u>Group S/A:</u> Silane (Silane	resin cement (RelyX ARC; 3M	(DL500; EMIC, S~ao Jos_e	Group C	ervical	Middle	Apical
Valente LL,	treatments on the	coupling agent; Dentsply) +	ESPE)	dos Pinhais, PR, Brazil)	S/A	8.6	8.1	3.2
		Adhesive (Scotchbond		Speed: 1mm/min	S	5.6	4.1	5.1

Münchow EA,	retention of glass	Multipurpose Plus Adhesive;		Slice: 1,0 mm	А	4.4	4.4	5.5	5
Piva E.	fiber-reinforced	3M ESPE)		Stereomicroscope and					
	post to root	<u>Group S</u> : Silane (Silane		digital micrometer	Whereas sil	anization as	the only po	st surface	
2015	dentin.	coupling agent; Dentsply)		(Mitutoyo, Santo Amaro, SP,	treatment o	did not impro	ve retentio	n, the	
		<u>Group A</u> : Adhesive		Brazil) with 0.01-mm	combinatio	n of silane pl	us resin adl	nesive enh	anced
		(Scotchbond Multipurpose		accuracy atX40	post retenti	ion to dentin	in the mide	lle and cor	onal
		Plus Adhesive; 3M ESPE)		magnification	root region:	S.			
				Failure predominance:					
				Adhesive between					
				post/cement					
Freitas TL de,	Evaluate the effect	Type: Translucent Glass fiber	Dual-curing luting composite	Apparatus:	Push -out r	esults:(MPa)	•		
Vitti RP,	of different glass	post (White Post DC, FGM),	(Variolink II, Ivoclair Vivadent)	A universal testing machine	6	<u> </u>	N 41 1 11	A : 1	1
Miranda ME,	fiber posts (GFPs)	PC – customized post	The adhesive system (Adper	(DL 2000, EMIC, Sao Jose	Group	Cervical	Middle	Apical	-
Brandt WC.	diameters on the	number 0.5 with composite	Scotchbond Multipurpose Plus,	dos Pinhais, PR, Brazil)		6.2	4.9	5.1	-
2019	push-out bond	resin (Tetric Ceram A2, Ivoclair Vivadent).	3M ESPE) was applied (adhesive	Speed: 0.5 mm/min. Slice: 2mm and 1,7mm	2	10.7	7.9	8.6	-
2019	strength to dentin	Surface:	system plus actor .		5	6.0	4.4	5.9	-
		37% phosphoric acid (Condac		Stereomicroscope (EK3ST,	С	8.8	10.5	7.7]
		37, FGM) Then, a Silane		Eikonal Equipamentos					
		(Prosil, FGM)+ The catalyst of		Opticos e Analiticos, Sao		showed the h	5	5	
		the adhesive system (Adper		Paulo, SP, Brazil) at 40x		not statistica			
		Scotchbond Multipurpose		magnification		vere not stati bond strengtl		erenit anu	SHOWED
		Plus, 3M ESPE		Failure predominance:		nance of ACD			for D2
				1º: adhesive between	•	. On other ha			
				dentin/cement	mode in P1		inu, the pi		
				2° adhesive between					
				post/cement					
Samimi P,	Compare two	Type: conical shape glass fiber	self-etch resin cement (Panavia	Apparatus:	Push -out N	Aean results	(MPa):		
Mortazavi V,	pretreatment	posts	F2.0, Kuraray, Japan).	a Universal Testing					
Salamat F.	methods of a fiber	Surface:		Machine (Zwick Roell Z020,	Group	Cervica	l Middl	e Apio	cal
	post and to	<u>Group HF+S</u> =		Zwick, Germany).	HF+S	9.34	8.43	6.9	4
2014					HF+S+W	P 12.8	10.96	14.6	54

	evaluate the effect	hydrofluoric acid (HF) etching		Speed : 0,5mm/min	<u>H2O2</u> +S	14.38	9.69	6.7	6
	of heat treatment	and silane (S)		Slice: 2 mm	<u>H2O2</u> +S+W	P 6.96	10.53	9.1	3
	to applied	<u>Group HF+S+WP</u> = HF etching		Stereomicroscope (Lomo		•		•	
	silane on the	and heat-treated silane		SF-100, MBC-10, Moscow,	Bond streng	th was not s	tatistically	influenced	by the
	push-out bond	application and warmed posts		Russia) (363)	kind of etchi	ing material	used, but v	vas signific	antly
	strength for	$(WP); \underline{Group} H_2O_2 + S =$		Scanning electron	affected by I	heat treatme	ent of appli	ed silane. T	The
	different	hydrogen peroxide etching		microscope (SEM, Philips	interaction b	between the	se two fact	ors was no	t
	levels of root.	and silane application;		XL30, Philips Eindhoven,	statistically	significant. (Group HF+S	+WP show	ed the
		<u>Group H2O2+S+WP</u> = hydrogen		etherlands).	highest bond	d strength.			
		peroxide and heat treated-		Statistical					
		silane application and		Failure predominance:					
		warmed post;		1º: mix					
				2º: adhesive between					
				pin/cement and					
				dentin/cement					
Gomes KGF,	Evaluate the	Type : Glass fiber post (Exacto;	Dual-polymerizing cement (RelyX	Apparatus:	Push -out M	lean results:	:(MPa)		
Faria NS, Neto	influence of laser	Angelus)	ARC; 3M ESPE)	A universal testing machine	r				i i
WR, Colucci V,	irradiation on the			(3345; Instron Corp)	Group	Cervical	Middle	Apical	
Gomes EA.	push-out bond	Surface: silane control (GC);	The adhesive system (Adper	Speed : 0,5mm/min	GC	4.028	2.626	1.616	
	strength of glass	Er:YAG laser	Single Bond 2; 3M ESPE)	Slice: 2mm	GYAR	2.192	1.358	1.381	
2017	fiber posts to	irradiation (GYAG); Er;Cr:YSGG	A dual-polymerizing resin cement		GCR	3.793	4.683	4.963	
	radicular dentin.	laser irradiation (GCR); and	(RelyX ARC; 3M ESPE	Stereomicroscopy (Leica	GDI	2.140	2.525	1.737	
		diode laser irradiation (GDI).		DFC295 attached to a Leica					
		Silane-coupling agent		S8 APO; Leica	Cervical thi	rd GC and	GCI shov	ved highe	r bond
		(Ceramic Primer; 3M ESPE)		Microsystems) at ×40 m	strength.				
				magnification	Middle and	apical third	s GCR sho	wed highe	er bond
				Failure predominance:	strength.				
				1º:adhesive between	Er;Cr:YSSG la				
				post/cement	strength of		•		gions of
				2º:adhesive between	the root: cer	vical, middle	, and apica	l thirds.	
				dentin/cement					

Liu C, Liu H,	Evaluate the	Type: radiopaque, translucent	Four dual-cure resin cements	Apparatus:	Push -out Mean results:(MPa):	
Qian YT, Zhu S,	influence of post	Glassix glass fiber composite	<u>DMG LuxaCore</u> Smartmix Dual	A universal testing machine		
Zhao SQ	surface pre-	posts (Harald Nordin SA,	DMG,(Acrylic resin, glass powder,	(1121; Instron, Danvers,	GROUP	MEAN
	treatments on the	Chailly/ Montreux,	silica, urethane	MA,USA).	NS/ DMG LuxaCore	8.44
2014	bond strength of	Switzerland)	dimethacrylate, aliphatic		NS/ Multilink Automix	8.79
	four different	Surface:	dimethacrylate, aromatic	Speed: 0,5mm/min	NS/ Panavia F2.0	11.77
	cements to glass	SA: sandblasting,	dimethacrylate) (No primer		NS/ RelyX Unicem	14.77
	fiber	SI: silanization	available)	Slice: 1,00 mm	SA/DMG LuxaCore	13.97
	posts.	SS: sandblasting followed by	<u>Multilink Automix Ivoclar-</u>		SA/Multilink Automix	9.37
		silanization	Vivadent, (HEMA, dimethacrylate,	Stereo microscope XTL-33	SA/Panavia F2.0	14.34
			barium glass, ytterbium) (primer	Stereomicroscope (340)	SA/ RelyX Unicem	16.89
			comp.: Water, HEMA, phosphoric	(Shanghai Pudan Optical	SI/DMG LuxaCore	9.46
			acid acrylate, polyacrylic acid-	Instrument, Shanghai,	SI/ Multilink Automix	9.83
			modified methacrylate resin)	China)	SI/Panavia F2.0	16.40
			Panavia F2.0 (Kuraray) (MDP,	Failure predominance:	SI/ RelyX Unicem	15.29
			dimethacrylate, barium glass	1º: adhesive between	SS/DMG LuxaCore	13.23
			powder, sodium fluoride, silica, amine, benzoyl peroxide, sodium	post/cement 2º: cohesive of dentin	SS/Multilink Automix	8.95
			aromatic sulfinate)(primer comp.:		SS/Panavia F2.0	12.63
			HEMA, 10-MDP, N-methacryl,		SS/ RelyX Unicem	15.33
			odium benzene sulfinate, 5-			
			aminosalicylic, N,N-diethanol		When DMG LUXACORE Smartmix	Dual is used, air
			ptoluidine, water)		abrasion of glass fiber posts has a s	ignificantly helpful
			RelvX Unicem (3M ESPE, St Paul,		effect on the micro push-out	bond strength.
			USA) (Silica, calcium hydroxide,		Silanization of the post surface I	has no significant
			methacrylated phosphoric ester,		effect on the interfacial bond stre	ngth between the
			glass, dimethacrylate, acetate)		post and the resin cement. There	was no significant
			(No primer available)		difference in bond strength betwee	
					group and the control group. Com	
					data of the four cements, Panavi	
					Unicem proved to have significa	
					micro push-out bond strength y	
					LUXACORE Smartmix Dual and Mul	tilink Automix.

Dimitrouli M,	Compare the	Type : Two glass fiber post	DT Light posts were cement with	Apparatus:	Push -out Mean r	esults:(MPa):		
Geurtsen W,	push-out strength of glass fiber posts	systems (DT Light SL (DTSL). The DT Light SL posts (3 self-adhesive resin cements: Maxcem Elite (MC) Kerr, Bioggio,	(Type 20K, UTS, Ulm) Speed : 1mm/min	GROUP	BEFORE		AFTER TC
Lührs AK.	dependent on the	quartz fibers). The DT Light	Switzerland	Slice: 2mm	VL	16.5		13.5
2012	resin cement.	SL post has a double taper	iCem (IC) Heraeus, Hanau,	Microscope, Wild M3Z Type-	RLX	8.0		11.3
2012	resiri cemene.	design, The DT Light SL posts	Germany)	S, Heerbrugg, Switzerland)	MC	10.0		9.4
		possess an industrial-coated	BifixSE (BF) VOVO, Cuxhaven,	at ×25 and ×40	IC	14.2		13.1
		surface. This coating is made	Germany	magnification	BF	22.5		9.5
		of silane and silicate and	RelyX Fiber Posts were cemented	Failure predominance:	DI	22.5		9.5
		RelyX Fiber Post (RF)) were	using:	1º:Adhesive between	The highest push	-out strength	20000	all coments
		used. RelyX Fiber posts	RelyX Unicem (RLX) 3M	cement/post	was measured f	-	-	
		consist of glass fibers	ESPE,Seefeld,Germany	2º mix	significantly differ			
		(zirconia based, 80–90% by	The control group, also using DT		differences betwe			5
		weight). the RelyX Fiber posts	Light Post were cemented with		TC. Group VL, the	5 1		
		do not possess a coating	an etch & rinse cement:		revealed the sec			
			Variolink II/Exite DSC (VL) Ivoclar		before TC, which	-		-
			Vivadent, Ellwagen, Germany		statistically signif			
					self-adhesive resir			
					found for RLX wi	thout TC whi	ch incre	eased slightly
					after thermocyclin	g.		
					The bond strength	of adhesively	cement	ed glass
					fiber posts are not	dependent or	n the typ	oe of resin
					cement. A self-adl	nesive resin ce	ement sy	rstem can
					result in bond stre	ngth values th	nat are c	omparable to
					a conventional "et		lhesive s	system.
Shiratori FK,	The purpose of	Type : glass fiber	<u>Group BIS: Biscem</u> cement (Bisco	Apparatus:	Push -out Mean r	esults:(MPa)		
Valle AL Do,	this study was to		Inc); (comp.: : Bis-GMA,	A universal	· · · · ·	I		,
Pegoraro TA,	evaluate the bond		Unpolymerized dimethacrylate	testing machine (DL500;	GROUP		Sub-L	Sub- C
Carvalho RM,	strength of 3 self-		monomer, Glass Filler, Phosphate	EMIC,	BIS		13.37	9.48
Pereira JR	adhesive cements		acidic monomer)	Pinhais, Brazil)	BRE		13.65	13.64
2012	used to cement		Group BRE: Breeze cement	Speed: 1mm/min	MAX	7.87	7.21	9.89
2013			(Pentron Clinical Technologies,	Slice: 1mm				

	intraradicular glass fiber posts. The cements all required different application and handling techniques.		wallingford, Conn); (comp.: Breeze Mixture of BISGMA, UDMA, TEGDMA, HEMA, & 4-MET resins, silane-treated barium borosilicate glasses, silica with initiators, stabilizers, and UV absorber, organic and/or inorganic pigments, opacifiers). <u>Group MAX</u> : Maxcem Elite cement (Kerr, Orange, Calif) (comp.: Unpolymerized	Optical microscopy (Carl-Zeiss, Oberkochen, Germany) at ×40 magnificationFailure predominance: Adhesive dentin/cement in all samples	Application and handling techn the bond strength of Biscem ce intraradicular post cementation other techniques Biscem cemer mean bond strength values wh mixing syringe and application t Breeze cement and Maxcem of significantly with different app techniques.	ements when used for n Compared with the nt presents the lowest nen used with a self- tip. cement do not differ
			methacrylate ester monomers, mineral fillers, ytterbium fluoride, activators, stabilizers, and colorants.). Cement insertion techniques A: Auto mixture syringe + Application tip L: Spatulation for 20 sec + Lentulo for 5 sec C: Spatulation for 20 sec + Centrix Syringe			
Laith Konstantinos	Compare the traditional cement	Type: Fiber post (LuxaPost- DMG)	<u>Group A</u> : 37% orthophosphoric acid (Superlux-Thixoetch- DMG)	Apparatus: A universal testing	Push -out Mean results:(MPa):	
В.	systems with		+ a dual-curing adhesive system	machine Galdabini-Sun 500	GROUP	MEAN
	those of the latest		(LuxaBond-Total Etch-DMG),	speed: 0,5 mm/min	A	12.58
2017	generation, to		dual-cured resin-composite	slice: 1 mm	В	6.58
	assess if indeed		cement (LuxaCore-DMG)		С	5.7
	these could represent of viable substitutes in the		<u>Group B</u> : self-adhesive resin cement (Breeze-Pentron Clinical) <u>Group C</u> : 3 steps light-curing, self-etching self-conditioning	optical microscope (Zeiss laser scan).50x	The adhesion force is greater for bond strength values were etching step wasn't performed.	•

	cementation of indirect restorations, and in the specific case of endodontic posts.		bonding agent (Contax- Total- etch-DMG), dual-cured resin- composite cement (LuxaCore- DMG)		acid combin and a dual-o	n orthophospl ed with a dua cured resin-c nat guarantee	al-curing ad omposite ce	
Tuncdemir AR,	Evaluate the	Туре:	Self-curing adhesive	Apparatus:	Push -out re	esults:(MPa)		
Yıldırım C,	influence of post	quartz fiber posts.	cement (MultilinkAutomix,	A universal testing machine	Group	Cervical	Middle	Apical
Güller F, Özcan	surface treatment	Surface:	lvoclar, Vivadent, Liechtenstein),	(AGS-X, Schimadzu Corp.,	CONTROL		3.09	1.79
E, Usumez A.	methods on the	Group 2: 50-µm aluminum-		Kyoto, Japan)	Al ₂ O ₃	4.61	2.70	2.17
2013	push-out bond strength of	oxide (Al ₂ O ₃)		Speed: 1 mm/min Slice: 1 mm	Er:YAG	4.68	3.14	2.84
	adhesively luted quartz fiber posts	Group 3: Er:YAG laser (10 Hz,150 mJ) irradiation.		Failure predominance: Mix in all samples	irradiation a affect the p root surface The highest coronal root	e airborne particle abrasion or Er:YAG laser adiation applied on quartz fiber posts did no fect the push-out bond strengths relative to ot surfaces. he highest bond strength was observed in th ronal root section in all groups.		
Durski MT,	Evaluate the	Type : glass fiber post	RelyX ARC (ARC) HEMA, (bisGMA,	Apparatus:	Push -out re	esults:(MPa)		
Metz MJ,	push-out strength	Application:	dimethacrylate resins,	A Universal Testing		<u> </u>		A : 1
Thompson JY, Mascarenhas	of two different adhesive	1)RelyX ARC +microbrush 2)Relyx ARC + elongation tip;	methacrylate modified polycarboxylic acid	Machine Instron, Canton, MA, USA)	Group 1	Cervical 10.44	Middle 7.09	Apical 3.95
AK, Crim GA,	cements (total	3)RelyX Unicem + microbrush	copolymer, photoinitiator/	Instrum, Canton, MA, USA)	2	11.13	8.24	5.85
Vieira S, et al.	etch and self-	4) RelyX Unicem +elongation	water, ethanol)	Speed :0.5 mm/min.	3	14.81	11.32	7.3
	adhesive) for glass	tip;	RelyX Unicem (RU) AND RelyX		4	18.68	14.97	9.42
2015	fiber post (GFP)	5) RelyX Unicem + 37%	Unicem	Slice : 1,0 mm	5	21.57	17.19	9.34
	cementation using	phosphoric acid + microbrush,	<u>þ etching</u> (RUE):		6	22.17	18.61	14.72
	two different techniques (microbrush and elongation	6)RUE + elongation tip (all 3M ESPE).	(Methacrylated phosphoric esters, dimethacrylates, acetate, initiators, stabilizers, glass fillers,		values whe		to total-etc	ush-out streng h cement in

	tip) of cement application.		silica, calcium hydroxide).		The cervical third region of the root canal dentin displayed the highest push-out strength values, while the apical third had the lowest results. The cement application technique utilizing the elongation tip had higher push-out strength values when compared with the microbrush technique. The optional conditioning step before self-adhesive cementation obtained the highest push-out strength values regardless of application technique or root area.	
Arslan H, Ayranci LB, Kurklu D, Topçuoglu HS, Barutcigil C. 2016	Evaluate whether fiber post surface conditioning with air abrasion or (Er:YAG) laser would influence the bond strength of dual-cure resin cement to the (FRC) posts.	Type : fiber-reinforced (FRC) posts. Surface : G2: air abrasion with Al ₂ O ₃ (50μm/20seg.). G3: Er:YAG laser (150 mJ, 10 Hz, 1.5 W), 60 seg.	Dual -polymerizing res (Variolink II; Ivoclar Vivadent AG)	n Apparatus: (MicroTester, Instron, Norwood, MA). Speed: 0.5 mm/min Slice: 2mm Stereomicroscope (Novex, Arnhem, Holland) at ×20 magnification Scanning electron microscope (EVO LS10, Zeiss, Oberkochen, Germany) at ×3000 magnification.	Push -out Mean results:(MPa):GROUPMEANControl15.25Air abrasion19.73Er:YAG 150mJ17.84The highest push-out bond strength was observed in the air abrasion group, and there was a significant difference when the group was compared to the untreated group. In the Er:YAG laser group, a higher bond strength value was observed than in the control group, but statistical analysis did not reveal any significant differences .After air abrasion, the surface topography of the FRC posts appeared to be significantly more micro-retentive	

The major findings are shown in Table 1 and described as follow.

- The highest push-out strength values between teeth root intracanal posts and resinmatrix cements were recorded at 17.5 and 22.5 MPa (2,3,15). Statistic differences (*P*=.001) were noticed to others resins-matrix cements regarding the push-out strength values ranging from 4.65 to 13.6 MPa(2);
- The high push-out test bond strength value of 22.5 MPa were measured over a factory pré-treated surface post by physical vapor deposition process of silane and silicate, cemented by a self-adhesive cement
- Another high push-out bond strength values of 21.54 MPa were measured on intracanal post surfaces modified with a combination of silane and hydrogen peroxide treatment (4). The solely application of silane had a significant influence on the post surface modification since the bond strength values were recorded around 20.5 MPa (4);
- High push-out bond strength mean values of 19.73 ±2.72 MPa were also recorded on teeth root intracanal posts modified by grit-blasting with 50µm Al₂O₃ particles for 20 s (20). There were significant differences when comparing to a untreated group (15.28 ± 3.39 MPa) (*P*=.005) (20). Microscopic analyses revealed rough surface aspects after grit-basting that increase the mechanical interlocking of the resin-matrix cement (20);
- Within the regions of the root canal (cervical, middle, and apical thirds), twelve studies revealed differences in bond strength values regarding the thickness, polymerization, and adhesive type of the resin-matrix cements. On self-adhesive cements, a decrease in bonding strength values was noticed from apical (9.9 MPa) towards to middle (7.2 MPa), and cervical (5.7 MPa) (7). They correlate the decrease in bond strength in cervical regions due to decreased density of dentin tubules(7);
- Teeth root intracanal post surfaces treated with hidrofluoric acid, silane, and heat treatment showed a decrease in bond strength values from the middle (10.96 MPa) to cervical (12.08 MPa) or apical (14.64 MPa) third (11);
- The modification of the teeth root intracanal post surfaces by laser-irradiation also promoted an increase in the push-out bond strength values of posts to the resin-matrix

cements in all regions of the root canal (13,20). Mean values of push-out bond strength were recorded at 17.8 \pm 3.42 MPa for Er:YAG at 150 mJ, 10 Hz, 1.5 W, 100µm for 60 seg irradiation (20) followed by 4.963 \pm 0.65 MPa for Er;Cr:YSGG at150 mJ, 10 Hz, 1.5 W, 140µm for 60 seg (13).

Fracture Analysis evaluations were performed in almost all the pushed-out specimens under a microscopic analyses. The dominant failure patterns were noted at the resin cement to dentin, resin cement to post, and mixed fractures. Five studies reported adhesive fracture between the dentin and resin-matrix cement (3,5,8,11,16); while 5 studies pointed out adhesive fracture between resin-matrix cement and post (6,10,13–15) and 4 studies pointed out mixed fractures (dentin, cement and post) (1,9,12,18). Only 1 study reported a cohesive failure at the dentin interface (14).

4. DISCUSSION:

4.1. Teeth root intracanal posts

Different types of standard and custom-made teeth root intracanal posts are used to restore the remnant teeth structure compromised by injuries or caries. In the last years, standard metal-free posts have intensely been used for endodontically-treated teeth reconstruction, as seen in Figure 2 (6,10,15-17,20).

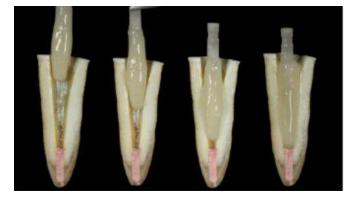


Figure 2: in the left side: conical and cilindrical posts, serrated posts and double tapered. In the right side a custom made post.

http://angelus.ind.br/assets/uploads/2019/12/medias_1708161112_Caso-Clinico-025-PORT.pdf

Considering design, conical-like posts are the most available post, although double tapered, cylinder, conical or parallel walled posts with tapered or straight ends can also be found (15,19). Their cross-sections are often circular, due to the root intracanal preparation by drilling tools. However, posts with an oval cross-section can be found, in that case, an ultrasonic tip maintains the root intracanal design with an oval shape leading to a proper fit of the post and decreasing the resin-cement layer thickness (1,15,18,19). Metal-free teeth root intracanal posts are mainly composed of composite materials involving short glass fibers embedded by an organic epoxy matrix. That strategy intends to form a single body with the remaining teeth structure when cemented with a resin-matrix cement (6,10,15–17,20). The risks of teeth fracture are reduced regarding the properties of the composite posts and resin cement. However, the relationship among the root intracanal preparation, post design, and materials' properties determine the mechanical behavior of the endodontically restored teeth.

Regarding materials, metallic or zirconia-based posts show guite dissimilar properties when compared to dentin and enamel leading to a mismatch in stress distribution. The elastic modulus of zirconia of around 240 GPa is significantly higher when compared to that of dentin (~20-40 GPa) and enamel (~60-80 GPa), as seen in Table1 (1,18). The dissimilar elastic modulus induces the concentration of stress at the post-to-teeth interfaces leading to risks of fractures at the resin-cement layer (2,3,7,12). In this way, the epoxy-matrix reinforced with glass fibers show a guite closer elastic modulus (30-60 GPa) when compared to the teeth structures (12,14). The content, shape, dimensions, and dispersion of the fibers are mainly responsible for the mechanical properties of the composite post as stiffness and strength (6,15,18). The fibers have short length which are aligned to the long axis of the post. The matrix/fiber ratio can vary from 35/65 up to 20/80 (Table 1) (10,15,16,18,20). Thus, the mechanical properties of the composite post are also similar to that of the resin-matrix cements that allows transmission the occlusal forces throughout the entire post/cement/teeth structures (6,11,16,18). Composite posts provide optimal mechanical behavior with a dentin-like flexural modulus avoiding stiffness mismatches and fractures (2-4,10,12,14,19,20). Furthermore, the corrosion resistance and biocompatibility of composite posts are higher than those reported by metallic post. The optical properties

of glass fiber-reinforced composite (GFRC) posts are proper to mimic the optical properties of the dentin. These posts are also translucent, that gives then an esthetic advantage when compared the metallic posts (5,6). GFRC posts are also capable of light transmission light to ensure the light-curing process of resin-matrix cements inside the root canal (11,18–20). Therefore, radiopaque compounds are added in their chemical composition for fitting examination by radiographic analyses.

4.2. Resin-matrix cements for endodontic post retention:

Resin-matrix cements are usually composed of a resinous matrix including methacrylate monomers such as Bis-GMA, Bis-EMA, UDMA, TEGDMA, HEMA, 4-META (8)(16). The viscosity is balanced by the combination Bis-GMA, UDMA or Bis-EMA with TEDGMA, HEMA and 4-META which also provide hydrophilic capabilities (3,11). A photoinitiator such as camphorquinone is required to start the polymerization under light irradiation in association with a co-initiation, mainly a tertiary amine. Additionally, the polymerization by chemical activation is initiated by the presence of the benzoyl peroxide in the case of dual-and self-cured resin cements (3,14). Water, ethanol, organic and inorganic pigments and opacifiers will also be present in the resinous matrix (3,14,16). Self-etching cements also contain an acidic component in their formula such as 10-MDP (methacryloyloxydecyl dihydrogen phosphate). That compound is a phosphorylated methacrylate used for interaction with GFRC or ceramic posts and the dentin hydroxyapatite leading to a chemical bonding (3,14,19).

Concerning the limitations with the teeth root intracanal narrow region and clinical visibility, dual- and chemically cured resin cements are recommended for the retention of endodontic posts (5,9). Thus, the chemical activation become crucial to guarantee the polymerization of the resin cement mainly in the apical region of the teeth root canal. The physical properties and handling of the resin cement are also important to allow the flowing throughout the endodontic post and intracanal space (2,16). Paste-to-paste or self-mixing syringe are commercially available to the use of resin cements for retention of endodontic

20

posts. However, paste-to-paste materials are dependent on the individual handling sensitivity that can lead to inclusion of bubbles into the cement and heterogenic chemical composition (10,12). Self-mixing resin cements by using specific syringes have the advantage of avoiding the bubbles which can form pores in the resin cement microstructures (17,19). Regarding the material application, the following clinical protocols can be used: coating the post with resin cement; placement of the post with a paste carrier drill or microbrush; syringe application into the intracanal paste; or combining the mentioned methods (13,16,19). Thus, resin-matrix cements must reveal physical properties such as: viscosity, flowability, elastic modulus close to the teeth tissues, low shrinkage, sealing, chemical stability after polymerization, biocompatibility, optical versatility, and proper mechanical properties (2,5,9,11,16,17,19).

The intrinsic features of the root canal anatomy such as conicity and roundness determine the shape of the intracanal region (2,19). Moreover, the preparation of the intracanal space by using drills can provide the space required for a standard and custom-made posts (7,11,13). The fitting of the endodontic post will result in a minimum resin cement thickness for retention of the post into the root canal. Nevertheless, the resin cement layer thickness tends to increase from apical to coronal regions (1). Previous findings reported that bond strength of the endodontic post to the teeth root canal is inversely proportional to the resin cement layer thickness, as seen in Table 1. As a thick resin cement layer showed a higher risk of defects such as: voids, pores, and cracks from polymerization shrinkage (3,12). Thicker layers of resin cements also increase the concentration of stresses at the interface as seen in Table 1 (7,13).

4.3. Adhesion of fiber-reinforced composite posts

Different surface treatments have been assessed to increase the bond strength of fiber posts to resin cement (Table 1). Such surface modification includes the following methods: (i) chemical modification by using silane, acidic etching, and adhesives; (ii) physical modification by air-abrasion (grit-blasting); laser irradiation; and machining processes (8).

The silane-based coating can promote the chemical bonding between the post surface and the resin cement since the silane compounds (8). The air-abrasion with abrasive aluminum oxide (Al₂O₃) particles increases the roughness of the endodontic post and surface contact area. That allows the flowing of the resin-matrix cement and mechanical interlocking under light-curing (13,14). The roughness can be controlled by selecting the size of abrasive particles and the air-abrasion parameters (distance, pressure, and time) (20). The light amplification by stimulated emission of radiation, known as LASER, has become increasingly popular in different fields including dentistry. Different lasers have been used to modify surfaces as follow: Neodymium-doped Yttrium Aluminium Garnet (Nd:YAG) laser, copper vapor laser, and excimer laser, Er:YAG, Er:YSGG, Diode laser. Although several benefits, undesired thermal side effects and mechanical drawbacks were reported as the disadvantages of laser procedures. Failures such as microcracks and fissures have been reported as a result of the laser thermal effects (6). Physical modification of surfaces tend to expose the fibers underneath the post outer layer that can be functionalized by further physicochemical methods (8).

Most of the selected studies have validated the effect of physical and chemical methods as seen in Table 1. A previous study compared the push-out strength (Figure 3) of GFRC posts from teeth root canal as dependent on five different resin matrix cements: group VL: etch-and-rinse system (Variolink II)group RLX: Rely X Unicem, Group MC: Maxcem Elite, Group IC: iCem; Group BF: Bifix SE (15). The highest push-out strength values were recorded at around 22.5 MPa (BF group) followed by 16.5 MPa (VL group). Fracture analysis showed mainly adhesive failure modes between post and resin cement for the etch-and-rinse surface modification groups while the self-adhesive resin cements groups revealed mainly mixed fracture modes between tooth and resin cement or between post and resin cement (15). Another study compared the effect of eight different resin-matrix cements on the shear bond strength of post to teeth root canals(2): resin modified glass ionomer cement (Rely X Luthing Plus), convencional glass ionomer cement(Luthing and Lining, Ketac Cem), dual-polymerized resin cement (Rely X Arc, duo-Link), dual-polymerized self-adhesive resin cement (Biscem, Rely X U 100, Variolink II). A conventional ionomer cement displayed the

highest bond strength values at around 18 MPa followed by the dual-curing self-adhesive resin cement (Biscem) with SBS values at 17.5 MPa(2).

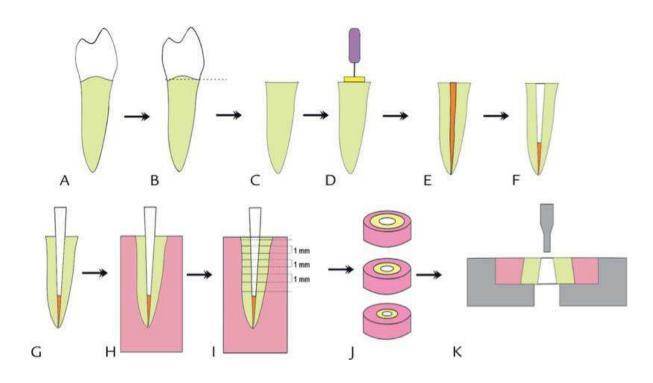


Figure 3. The micro push-out schematics: (a,b,c,d,e) specimen endodontic preparation, (f,g,h,i) preparation and cementation of the fiber glass pin; (j) tooth slices (k) diagram of micro push-out test device.

https://www.researchgate.net/figure/Specimen-preparation-and-testing-apparatus-for-pushout-test-A-Mandibular-premolar_fig1_289569342

The effect of using silane or air-abrasion with Al₂O₃ particles has been compared on the bond strength of endodontic posts to teeth root canals (8). Silane coating showed to increase the bond strength values in push-out test (9.5 MPa) of endodontic posts to teeth root canals(8). A previous study evaluated the effect of grit-blasting (aluminum oxide particle), silanization and the association of grit-blasting followed by silanization(14). The findings showed that a pre-treatment has resulted in significantly higher push out bond strength values when compared to a control (free of surface pre-treatment). The highest

mean values were recorded for the grit-blasting group (13.65 MPa), followed by the silanization group (12.75 MPa) (Table 1). Another study revealed the highest push-out bond strength values for the surfaces modified with a combination of H_2O_2 and silane (16.582 MPa) followed by surfaces solely modified with silane (13.799 MPa) or a combination of grit-blasting and silane (11.726 MPa)(4).

Regarding the laser irradiation effect on the push-out bond strength of endodontic posts to teeth root canals, the following groups were assessed in a previous study: silane as control; Er:YAG laser irradiation; Er;Cr: YSGG laser irradiation; and light emission diode (LED) irradiation(13). The surfaces modified with silane (4.02 MPa) and Er;Cr: YSGG (3.78 MPa) showed the highest bond strength values(13). Analysis of the post surfaces by laser microscopy revealed a slight removal and fusion of the outmost layer composed of epoxy matrix, thereby exposing the fibers without loss of material and/or ablation of glass fibers in the Er:YAG laser irradiation group. The glass fiber post treated with the LED irradiation showed excessive material loss, ablation of glass fibers and epoxy matrix(13). Another study also revealed the highest push-out bond strength values (3.4 MPa) on the surfaces treated with Er:YAG when compared to surfaces irradiated with Er,Cr:YSGG or Nd: YAG laser (0.737 to 1.111 MPa)(5).

On the effect of cementation techniques, a statistically significant difference was noted within self-adhesive cements(16). Three techniques were assessed: (i) automix/point tip applicator; (ii) handmix/lentulo; and (iii) handmix/centrix. The handmix/lentulo (13.65 MPa) combination yielded the highest mean bond strength values (13.65 MPa) followed by handmix/centrix (13.64 MPa)(16). Another study also reported differences when applying the etch-and-rinse or self-etch resin cements with microbrush or enlongation tip techniques(4). The elongation tip technique revealed the highest mean values on push-out strength test.

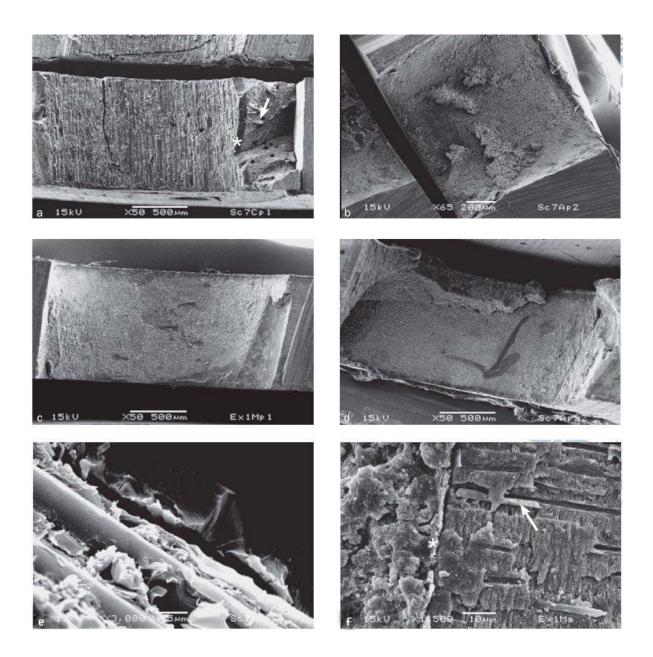


Figure 4. A study to evaluate the effects of different glass-fiber post surface treatments on the bond strength to root dentin that shows SEM images of the fracture modes . (a): failure at the resin cement/glass-fiber post adhesive interface. Note the thick adhesive layer(*) and the occurrence of voids in the resin cement layer (arrow); (b): failure at the resin cement/dentin bond interface; (c) cohesive failure in the resin cement; (d): mixed failure; (e) SEM images of the adhesive interfaces between the glass-fiber post and adhesive; and (f) between the resin cement and the root dentin. No hybrid layer was produced by the self-adhesive resin cement (*) and endodontic sealer remained inside the dentinal tubule (arrow). (3)

5. Conclusion

In the present review, was evalueted the bond strength of endodontic post to resin cements using a push-out test. Through the analysis of relevant articles some conclusions can be drawn as follow:

• The chances of success are not only influenced by a huge array a variables, but also the way each variable interacts among themselves can have a big impact in the outcome of the treatment;

• Root canal anatomy, thickness of the cement line, the diffusion of light throughout the body of the tooth/cement/post, the surface treatment of the post, the surface treatment of the tooth, the polymerization system of the resinous cement and the way it is applied to the root canal/post are the main variables to be considerate when performing the kind of treatment.

• The anatomy of the root canal with its different conicities and curvatures can even disallow the use of prefabricated posts and has a major role in the thickness of the cement line.

• There are several kinds of post treatment surface, such as sandblasting, laser irradiation, acid etching and silanizing, and they all increase the cement/post retention.

• Acid etching is the main process to treat the root canal system surface, can be performed through the use of phosphoric acid and rinsed prior to the adhesive application, of with the acid incorporated in the formulation of the cement (self-etch cements). Other treatments can be used in conjunction to help or to increase adhesion. Use of EDTA, laser irradiation and ultrasound are used to help remove the smear layer.

• Since the diffusion of light is low to non-existent in the more apical region of the root, dualcure or self-cure cements are preferred over exclusively photoactivated cements.

• The cement/post insertion protocol can greatly influence the outcome of the treatment. Automix syringes allows mixture and insertion in a simplified single step, are

less prone to include air bubbles in the cement body and forms less gaps due to incomplete root channel filling. Other methods of material insertion can be used.

No cementation protocol is fail proof. The specificities of the clinical case in conjunction with the experience and judgment of the professional will dictate the suitable technique and materials to solve each clinical case needs.

6. REFERENCES

- 1. Uzun I, Keskin C, Özsu D, Güler B, Aydemir H. Push-out bond strength of oval versus circular fiber posts irradiated by erbium-doped yttrium aluminum garnet laser. J Prosthet Dent. 2016;116(3):425–30.
- Pereira JR, Lins Do Valle A, Ghizoni JS, Lorenzoni FC, Barbosa MR, Dos Reis Só MV. Push-out bond strengths of different dental cements used to cement glass fiber posts. J Prosthet Dent. 2013;110(2):134–40.
- Leme AA, Pinho AL, de Souza Gonçalves L, Correr-Sobrinho L, Sinhoreti MAC.
 Effects of silane application on luting fiber posts using self-adhesive resin cement.
 J Adhes Dent. 2013;15(3):269–74.
- Mosharraf R, Ranjbarian P. Effects of post surface conditioning before silanization on bond strength between fiber post and resin cement. J Adv Prosthodont. 2013;5(2):126–32.
- 5. Šimundić Munitić M, Bago I, Glockner K, Kqiku L, Gabrić D, Anić I. Effect of Different Laser Treatments on the Bond Strength of Intracanal Fiber Posts Cemented with a Self-Adhesive Resin Cement. J Prosthodont. 2019;28(1):e290–6.
- Tuncdemir AR, Buyukerkmen EB, Celebi H, Terlemez A, Sener Y. Effects of Postsurface Treatments Including Femtosecond Laser and Aluminum-oxide Airborne-particle Abrasion on the Bond Strength of the Fiber Posts. Niger J Clin Pract. 2018;21(3):350-5.
- 7. Amiri EM, Balouch F, Atri F. Effect of Self-Adhesive and Separate Etch Adhesive Dual Cure Resin Cements on the Bond Strength of Fiber Post to Dentin at Different Parts of the Root. J Dent (Tehran) [Internet]. 2017;14(3):153-8. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29167687%0Ahttp://www.pubmedcentral. nih.gov/articlerender.fcgi?artid=PMC5694848
- 8. Druck CC eoli., Bergoli CD almoli., Pereira GK ali. R, Valandro LF elip. Effect of two resin cements and two fiber post surface treatments on push-out bond strength between fiber post and root dentin. J Contemp Dent Pract. 2015;16(1):7–12.
- 9. Kivanç BH, Arisu HD, Üçtaşli MB, Okay TC. The effect of different adhesive system applications on push-out bond strengths of glass fiber posts. J Adv Prosthodont. 2013;5(3):305–11.
- 10. Machado FW, Bossardi M, Ramos TDS, Valente LL, Münchow EA, Piva E. Application of resin adhesive on the surface of a silanized glass fiber-reinforced post and its effect on the retention to root dentin. J Endod. 2015;41(1):106–10.
- Freitas TL de, Vitti RP, Miranda ME, Brandt WC. Effect of Glass Fiber Post Adaptation on Push-Out Bond Strength to Root Dentin. Braz Dent J. 2019;30(4):350-5.

- Samimi P, Mortazavi V, Salamat F. Effects of heat treating silane and different etching techniques on glass fiber post push-out bond strength. Oper Dent. 2014;39(5):E217–24.
- Gomes KGF, Faria NS, Neto WR, Colucci V, Gomes EA. Influence of laser irradiation on the push-out bond strength between a glass fiber post and root dentin. J Prosthet Dent [Internet]. 2018;119(1):97–102. Available from: http://dx.doi.org/10.1016/j.prosdent.2017.01.013
- 14. Liu C, Liu H, Qian YT, Zhu S, Zhao SQ. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post. Int J Oral Sci [Internet]. 2014;6(1):56–60. Available from: http://dx.doi.org/10.1038/ijos.2013.83
- Dimitrouli M, Geurtsen W, Lührs AK. Comparison of the push-out strength of two fiber post systems dependent on different types of resin cements. Clin Oral Investig. 2012;16(3):899–908.
- 16. Shiratori FK, Valle AL Do, Pegoraro TA, Carvalho RM, Pereira JR. Influence of technique and manipulation on self-adhesive resin cements used to cement intraradicular posts. J Prosthet Dent [Internet]. 2013;110(1):56–60. Available from: http://dx.doi.org/10.1016/S0022-3913(13)60341-8
- 17. Laith Konstantinos B. Comparison between three glass fiber post cementation techniques. Ann Stomatol (Roma). 2017;8(1):29.
- Tuncdemir AR, Yıldırım C, Güller F, Özcan E, Usumez A. The effect of post surface treatments on the bond strength of fiber posts to root surfaces. Lasers Med Sci. 2013;28(1):13–8.
- 19. Durski MT, Metz MJ, Thompson JY, Mascarenhas AK, Crim GA, Vieira S, et al. Pushout bond strength evaluation of glass fiber posts with different resin cements and application techniques. Oper Dent. 2016;41(1):103–10.
- Arslan H, Ayranci LB, Kurklu D, Topçuoglu HS, Barutcigil C. Influence of different surface treatments on push-out bond strengths of fiber-reinforced posts luted with dual-cure resin cement. Vol. 19, Nigerian Journal of Clinical Practice. 2016. p. 218 – 22.