

Comparison of strength among different resin-matrix interim prostheses manufactured by traditional chairside and CAD-CAM: an "integrative review."

Margarida Marques da Silva

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Gandra, 30 de julho de 2021

Margarida Marques da Silva

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Comparison of strength among different resin-matrix interim prostheses manufactured by traditional chairside and CAD-CAM: an "integrative review."

Trabalho realizado sob a Orientação de Mestre Carolina Coelho e Co-Orientador Professor Doutor Júlio Souza

Declaração de Integridade

Eu, Margarida Marques da Silva, declaro ter atuado com absoluta integridade na elaboração deste trabalho, confirmo que em todo o trabalho conducente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.

Agradecimentos

Agradeço em primeiro lugar, à minha família, por estarem sempre ao meu lado ao longo desta fase tão importante da minha vida pois sem eles nada seria possível. Por todo o apoio, pelo amor incondicional e por acreditarem sempre em mim. Devo tudo a eles.

Ao **meu namorado,** por todos os momentos que esteve ao meu lado incentivando o melhor para mim, por todas as palavras ditas e por todo o carinho. Um pilar fundamental que tornou tudo mais fácil.

À minha orientadora, **Mestre Carolina Coelho** e ao meu Co-Orientador, **Professor Doutor Júlio Souza**, pelo empenho, disponibilidade, colaboração e por todo o conhecimento repassado.

Às minha amigas, **Bárbara Amorim**, **Ivana Cunha**, **Margarida Loureiro** e **Pilar Alves**, por tornarem os dias de faculdades mais coloridos, por todos os sorrisos, por todo o carinho e atenção. Fico muito agradecida por ter partilhado todos estes anos convosco e espero ter a vossa amizade para toda a vida.

Por último agradeço aos demais **professores e colegas**, que contribuíram sempre para o meu crescimento e sucesso.

RESUMO

Objetivo: O objetivo principal deste estudo foi realizar uma revisão integrativa sobre a resistência de diferentes próteses provisórias de materiais à base de resina fabricadas por CAD-CAM ou pela técnica tradicional.

Método: Uma revisão bibliográfica foi realizada no PUBMED usando uma combinação dos seguintes itens de pesquisa: "resina" OR "polímero" AND "prótese provisória" OR "prótese provisória" AND "CAD-CAM" ou "força". Artigos publicados na língua inglesa, de fevereiro de 2011 a fevereiro de 2021, relatando a resistência de diferentes materiais à base de resina para próteses provisórias. Estudos in vitro, meta-análises, ensaios clínicos randomizados e estudos de coorte prospetivos também foram avaliados.

Resultados: Dos 563 artigos identificados, 24 artigos foram selecionados para esta revisão integrativa. Diferentes materiais à base de resina fabricadas por CAD-CAM apresentaram valores maiores de força, variando de 31 a 142 MPa, quando comparados aos materiais fabricados pelo método tradicional pó/líquido para próteses provisórias que apresentaram valores de força variando de 15 a 133 MPa. Os materiais fabricados por CAD-CAM, possuem alto grau de conversão e baixa percentagem de poros e monômeros livres que proporcionam maiores valores de resistência. As tensões e fraturas ocorreram tanto na zona do pôntico quanto nas regiões de espessura fina dos materiais protéticos.

Conclusão: As próteses provisórias de matriz de resina e materiais fabricados por CAD-CAM apresentaram maior resistência quando comparadas às próteses produzidas pelo método tradicional pó/líquido. A baixa percentagem de defeitos como poros e um alto grau de polimerização podem fornecer propriedades mecânicas aprimoradas de próteses provisórias.

Palavras-chave: Resina; Polímero; Prótese provisória; CAD-CAM; Força

ABSTRACT

Purpose: The main aim of this study was to perform an integrative review on the strength of different interim resin-based prostheses manufactured by CAD-CAM or traditional chairside techniques.

Method: A bibliographic review was performed on PubMed using a combination of the following search items: "resin" OR "polymer" AND "interim prosthesis" OR "provisional prosthesis" AND "CAD-CAM" or "strength". Articles published in the English language, from February 2011 up to February 2021, reporting the strength of different resin-based materials for interim prostheses. *In vitro* studies, meta-analyses, randomized controlled trials and prospective cohort studies were also evaluated.

Results: Of 563 studies identified, 24 studies were selected for this integrative review. Different resin-based materials manufactured by CAD-CAM showed the highest strength values ranging from 31 up to 142 MPa, when compared to the materials manufactured by traditional chairside powder/liquid methods that showed strength values ranging from 15 up to 133 MPa. Materials manufactured by CAD-CAM, revealed a high degree of conversion and a low percentage of pores and free monomers that provided the highest strength values. The stress and fractures occurred the pontic zone as well as at the thin thickness regions of prosthetic materials.

Conclusion: Interim resin-matrix prostheses and materials manufactured by CAD-CAM reveals a higher strength when compared to prostheses produced by traditional chair side powder/liquid methods. The low percentage of defects such pores and a high degree of polymerization can provide enhanced mechanical properties of interim prostheses.

Keywords: Resin; Polymer; Interim prosthesis; Provisional prosthesis; CAD-CAM; Strength

CONTENTS

List of t	tablesx
List of f	figures xi
List of a	abbreviations and acronymsxii
1.	Introduction 1
	1.1. Objective and hypotheses 2
2.	Methods 3
	2.1. Information sources and search strategy
	2.2. Study selection and data collection process
3.	Results 5
4.	Discussion 30
	4.1. Materials for interim prostheses
	4.2. Strength the interim dental prostheses
5.	Conclusion
	Attachments
	Bibliography 39

LIST OF TABLES

Table

1) alought data anthought fuend the vetwice ad studies	0
1 . I	(elevant data pathered from the retrieved studies	×.
		-

LIST OF FIGURES

Figure

1.	Flow diagram of the search strategy used in this study	5
2.	Schematic representation of PMMA material manufactured by CAD-CAM	37
3.	Examples of universal testing machines	38
4.	Fracture regions recorded for prostheses manufactured from traditional technique	Je
	and CAD-CAM	39

LIST OF ABBREVIATIONS AND ACRONYMS

%	Percentagem
---	-------------

MPa Mega Pascal

GPa Giga Pascal

N Newton

1. INTRODUCTION

Interim restorations are subjected to chewing forces and require specific mechanical properties that allow them to survive the repeated functional forces of the oral environment, therefore, to predict the behavior of a material, it is important to understand its mechanical properties. (1–3) A well-crafted restoration allows for better control of the bacterial plaque, helping to keep the gingival tissue healthy and with the ideal shape, position, and emergence profile for the installation of a permanent prosthesis. Also, it re-establishes the vertical dimension of occlusion (DVO), centric relationship and occlusal/incisal plane. An optimal provisional restoration must therefore meet certain mechanical, biological and aesthetic criteria. (1,4–8)

According to their chemical composition, the interim materials can be composed of resins composed of Bis-acryl and Bis-GMA, which can be self- or dual-polymerized, and by acrylic methacrylate resins (PMMA, PEMA), which are self-curing. (1,5,6,9-13)Composite resins are formed by organic matrix, inorganic matrix and a bonding agent. These materials are dysfunctional capable of cross-linking with another chain of monomers. They have a polymeric structure created by the union of dimethacrylate monomers by linear bonds and are capable of cross-linking with another chain of monomers. Also, contain inorganic fillers (quartz, glass or silica) that increase their rigidity. (1,6,9,10) PMMA-based resins are organic compounds, presented in powder and liquid form. The powder is composed of polymer grains (PMMA), initiator (benzoyl peroxide), pigments, dyes, opacifiers, plasticizer, organic fibers (carbon, glass, polyethylene, nylon, and aramid) and inorganic fillers. Liquid contains monomer (methyl methacrylate), inhibitor, accelerator, and cross-linking agent. (14 - 17) They are monofunctional and linear molecules with low molecular weight that lead to reduced rigidity and greater shrinkage during polymerization. Filled materials give the material greater surface rigidity and greater resistance to compression and traction, increasing durability and clinical performance, reducing polymerization shrinkage and thermal shrinkage and expansion, controlling viscosity and handling characteristics, and even

decreasing water absorption. (1,7,9,10,12) With the advancement of technology, CAD-CAM materials based on PMMA appeared, which are highly crosslinked and with a more

homogeneous structure, less free monomers, and less porosity. (1,2,18) Interim prostheses can be fabricated by using traditional chairside or computer aided design/fabrication. CAD-CAM systems are based on 3 main components, firstly an intraoral scanner, which collects data from the preparation and neighboring structures and then converts them into fingerprints. Then a software (CAD) processes the information obtained allowing the operator, in a virtual way, to study, apply and improve the design of the restoration according to the desired and required particularities, and finally a milling unit for the manufacture of the restoration (CAM) using subtractive methods, starting from a solid block or disk that is mechanically progressively cut by a drill, until the desired final restoration geometry is obtained, or by additive manufacturing that is processed by joining a powder or liquid material when deposited layer by layer, guided by the segmented image of the design of interim prostheses involves the auto-polymerization of a polymer powder and liquid monomer or of 2-part composite resin pastes. (12)

Temporary restorations manufactured by traditional chairside are associated with deficiencies in terms of mechanical strength. The difficulty in controlling air bubbles and porosity during manual mixing of resins can lead to compromised mechanical strength, as it leads to the incorporation of voids. It can be controlled through self-mixed cartridge systems (bis-acryl resins) however CAD-CAM based materials offer better conditions.

1.1. Objective and hypotheses

The purpose of this study was to perform an integrative on the strength of different interim resin-based prostheses and materials manufactured by CAD-CAM or traditional chairside techniques. It was hypothesized that prostheses and related materials produced by CAD-CAM reveal the highest strength values when compared to

the prostheses and related materials manufactured by traditional chairside. Also, the mechanical performance of interim prostheses is negatively affected by a low degree of polymerization and high percentage of defects such as pores.

2. METHODS

2.1 Information sources and search strategy

A bibliographic review was performed on PUBMED (via National Library of Medicine) considering such database includes the major articles in the field of dentistry and biomaterials. The present search of studies was carried out in accordance with previous integrative or systematic review articles. The following search terms were applied: "resin" OR "polymer" AND "interim prosthesis" OR "provisional prosthesis" AND "CAD-CAM" OR "strength". Also, a hand-search was performed on the reference lists of all primary sources and eligible studies of this systematic review for additional relevant publications. The inclusion criteria encompassed articles published in the English language, from February 2011 up to February 2021, reporting the strength of different resin-based materials for interim prostheses. The eligibility inclusion criteria used for article searches also involved: *in vitro* studies; meta-analyses; randomized controlled trials; and prospective cohort studies. The exclusion criteria were the following: narrative review; systematic review; papers without abstract; case report with short follow-up period; articles assessing other properties of the resin-matrix materials.

2.2. Study selection and data collection process

Studies were primarily scanned for relevance by title, and the abstracts of those that were not excluded at this stage were assessed. Two of the authors (JCMS, MF) independently analyzed the titles and abstracts of the retrieved, potentially relevant articles meeting the inclusion criteria. The total of articles was compiled for each combination of key terms and therefore the duplicates were removed using Mendeley citation manager. The second step comprised the evaluation of the abstracts and non-excluded articles, according to the eligibility criteria on the abstract review. Selected articles were individually read and analyzed concerning the purpose of this study. At last, the eligible articles received a study nomenclature label, combining first author

names and year of publication. The following variables were collected for this review: authors' names, journal, publication year, purpose, chemical composition, flexural

strength, three-point bending strength, tensile strength, elastic modulus, main outcomes. PICO question was adjusted to the issue where "P" was related to the patients or specimens while "I" referred to the methods of analyses. Data of the reports were harvested directly into a specific data-collection form to avoid multiple data recording regarding multiple reports within the same study (e.g., reports with different set-ups). This evaluation was individually carried out by two researchers, followed by a joint discussion to select the relevant studies.

3. RESULTS

The literature search identified a total of 563 articles in PubMed, of which 155 duplicate articles were eliminated. Of the remaining 408 articles, 372 studies were excluded because they did not meet the inclusion criteria. The evaluation of titles and abstracts resulted in the selection of 36 potentially review articles of which 12 articles were excluded after full reading (**Figure 1**).

Figure 1. Flow diagram of the search strategy used in this study.

Of the 24 articles included in this review, 18 (75%) *in vitro* studies compared the interim resin-based prostheses manufactured by CAD-CAM or traditional chairside techniques. (1–3,5,7,9–12,18–26). Of which eleven studies assessed the mechanical

performance of prostheses by compressive load tests (2,3,25,26,9,11,12,18–22) while, five studies assessed the prostheses by using 3-point bending test (1,7,10,23,24) and two studies using a 4-point bending test (5,27). Two studies performed further computational analyses using the finite element method following the experimental set up and results. (12,18) Regarding the design, five studies assessed three-unit interim prostheses (18–20,25,26) while one tested 4-unit interim prostheses (12). Six in vitro studies (25%) evaluated the fracture behavior of resin-based prostheses manufactured by the traditional chairside (4,6,8,13,27,28).

The retrieved data on the chemical composition, processing parameters, elastic modulus, strength (MPa), and mechanical assessment are provided in Table 1.

The main results can be drawn as follow:

- The interim prostheses and materials produced by CAD-CAM showed higher strength values when compared to prostheses and materials produced by chairside powder/liquid methods. Regarding the design, three-unit interim prostheses manufactured by CAD-CAM revealed fracture loading values ranging from 644 up to 1339 N while traditional chairside powder/liquid methods revealed values ranging from 739.5 up to 946 N. Four-unit interim prostheses manufactured by CAD-CAM revealed fracture loading values ranging from 3136 up to 3126 N while traditional chairside powder/liquid methods revealed values ranging from 1287 up to 1320 N (1–3,5,7,9–12,18–26);
- Prostheses assessed using three-point bending test revealed fracture loading values ranging from 15 up to 131 MPa, while prostheses assessed using fourpoint bending test revealed values ranging from 70 up to 144 MPa (1,5,7,8,10,11,13,24,27,28);

6

 Regarding the chemical composition of the materials, PMMA showed higher fracture strength values than that recorded on bis-acrylic after manufacturing by CAD-CAM technique. (1,2,5,7,10,11,19 – 21,25) On the contrary, bis-acrylic prostheses revealed significantly higher strength values than that recorded for

PMMA based prostheses after manufacturing by traditional chairside technique (1,2,10,21);

- On the design effect, the presence of cantilever negatively affected the strength of the test prostheses. However, the prostheses manufactured by CAD-CAM still revealed the highest fracture loading values (1634-2649 N) than those recorded for the group manufactured by traditional chairside powder/liquid technique (1268-1954 N) (12);
- Another study showed maximum powder/liquid values ranging from 644 up to 987 N for the interim prostheses without a screw channel and ranging from 493 N up to 951 N for the interim prostheses with a screw access. Thus, the fracture loading values of the interim prostheses depended on the type of material, but not on the restoration design (with or without screw) (19);
- One study reported that prostheses with 1 mm finish lines (chamfer or shoulder) provides a higher fracture strength when compared to prostheses with 0.6 mm finish lines. Bis-acrylic prostheses was found to have the lowest fracture strength. (20) The fracture spots were most noted at connector zone followed by pontic and abutment regions. Stresses were located at those regions that initiated the cracks and the catastrophic fracture of the prostheses (12,18,19);
- Materials with fillers in their chemical composition manufactured by CAD-CAM and the traditional chairside powder/liquid methods showed higher fracture loading values when compared those without fillers (7,19);
- The flexural strength and the elastic modulus increased from 20% up to 50% when of reinforcing fibers were embedded in their organic matrix (6,11,26);
- Regarding the environment testing set up, the flexural strength decreased significantly for all materials after the thermal cycling effect (3,7);

Table 1. Relevant data gathered from the retrieved studies.

Author	PURPOSE	Study design	Chemical comp	position Processing	Elastic	Mechanical	Main outcomes
(Year)				parameters	modulus (GPa)/strength	assessment	
					(MPa)		
Abdullah et	Comparison the	• In vitro	A. PMMA within	14% (wt) A/B/C: CAD-	A. 2.8/80	Compressive load	Maximum compressive load
al.	marginal gap,	• First premolar	inorganic filler	Vita CAD- CAM (Sirona,	B. 3.6/ 165-	test (Lloyd	(N):
(2016)	internal fit,	was prepared for	temp; VITA	Zahnfabrik, Bensheim,	170	Universal Testing	A. 361.01
	fracture	full ceramic	Germany)	Germany)	C. 2.9/ 115-	Machine, LRX	B. 802.23
	strength, and	crown, they were	B. 100%	D: Self-mixing	130	2K5, Hants, UK)	C. 719.24
	mode of fracture	cemented to the	Polyetherether	rketone	D. 2.5/ 91-		D. 416.40
	of CAD-CAM	master die using	(PEEK; Invibio	Biomaterial	116		
	provisional	TempBond NE	Company, UK)				
	crowns with that	(Kerr, CA, USA)	C. 99.5% PMMA	, pigments			
	of direct		(Telio CAD	; Ivoclar			
	provisional		Vivadent, Lie	echtenstein,			
	crowns		Germany)				
			D. Bis-GMA, dim	nethacrylate			
			polymer,	zirconium			
			particles, silica	and silane,			
			pigments (Pro	temp 4; 3M			
			ESPE, German	y)			
Coelho et al.	Comparison the	• In vitro	A. PMMA within	14% (wt) A/B: CAD-	A. 2.8/80-97	Compressive load	Maximum compressive load:
(2020)	effects of CAD-	• Two types of 4-	inorganic filler	(Vita CAD- CAM (CEREC	B. 2.9/ 115-	test (TIRAtest	Without cantilever:
	CAM versus	unit interim	temp, Vita Zah	infabrik) 3; Dentsply	130	2705; TIRA	A. 3136
	traditional	prostheses were		Sirona)	C. 2.5/ 91-	GmbH)	B. 3126
	chairside	fabricated with			116	Finite element	С. 1287

	material		abutments on	Β.	99.5% PMMA, pigments	D/C: Self-	D.	2.4/ 58-75		D. 1390
	processing on the		the first premolar		(Telio CAD, Ivoclar	mixing				Presence of a cantilever:
	fracture and		and first		Vivadent AG)					A. 1634
	biomechanical		mandibular	C.	Bis-GMA, dimethacrylate					B. 2649
	behavior of 4-		molar.		polymer, zirconium					C. 1954
	unit interim	٠	Ni-Cr model		particles, silica and silane,					D. 1268
	prostheses with	٠	Distilled water		pigments (Protemp4, 3M					
	and without a		bath at 37ºC for		ESPE)					
	cantilever.		30 days	D.	P: PMMA, L: n-					
					butylmethacrylate/					
					urethanacrylate/					
					ethylmethacrylate					
					(Dentalon Plus, Kulzer					
					GmbH)					
Larissa et	Evaluation the	٠	In vitro	Α.	UDMA, Bis-GMA, Bis-EMA,	A/B: CAD-	Α.	8/14.7	Compressive load	Stress peak Mpa
al.	effect of interim	٠	Three-unit fixed		TEGDMA, Silica and fillers	CAM	В.	4/90	test	(occlusal/cervical):
(2021)	restorative		partial denture		(Resin composite)	(Rhinoceros	C.	2.2/90	Finite element	A. 7/14
	materials on the		(First Molar,	В.	100%	5.0 McNeel			(FEA)	B. 21/12
	stress		Second Premolar		Polyetheretherketone	North				C. 21/13
	distribution of a		and First		(PEEK)	America,				The connectors showed the
	posterior three-		Premolar)	C.	Polymethyl methacrylate,	Seattle, WA,				highest tensile stress
	unit FDPs	٠	Zinc oxide-based		diethyl phthalate, benzoyl	US)				magnitude
			cement)		peroxide,	C: Self-mixing				
					titanium dioxide (Acrylic					
					resin)					
Yao et al.	Investigation the	٠	In vitro	Α.	99.5% PMMA, pigments	A/B: CAD-	Α.	2.9/ 115-	3-point loading	Mean flexural strength values
(2014)	FS and marginal	٠	Models of a		(Telio CAD, Ivoclar	CAM		130	test (Easy Test	(before/ After thermal
	accuracy of 2		prepared left		Vivadent)	(Optispray;	В.	2.9/ 115-	EZ20; Lloyd	cycling):
	traditional bis-		maxillary first			Sirona Dental		130	Instruments Ltd)	A. 124.10/95.35MPa
	acryl composite		molar							B. 96.84/77.27

	resin interim	•	Water bath at	В.	PMMA within 14% (wt)	Systems	C.	2.5/ 91-		C. 103.13/92.97
	materials and 2		37ºC for 24 hours		inorganic filler (Vita CAD-	GmbH)		116		D. 107.85/84.85
	CAD-CAM		and termocycled		temp, VITA)	C/D: Self-	D.	1.8/90		
	interim		5000 cycles (5 to	C.	Bis-GMA, dimethacrylate	mixing				
	materials.		55ºC)		polymer, zirconium					
					particles, silica and silane,					
					pigments (Protemp 4,3M					
					ESPE)					
				D.	Bis-GMA, BHT, amines,					
					benzoyl peroxide,					
					dimethacrylates, glass					
					particles (Structur 2					
					SC/QM, VOCO)					
Karaman et	Investigation the	٠	In vitro	Α.	PMMA (Tempo-CAD,	A: CAD-CAM	Α.	2.9/ 78	Compressive load	Maximum compressive load
al.	impacts of finish	٠	Three element		Ondent Tıbbi Malz.	(7 Series,	В.	2.5/65	test (INSTRON	with 1 mm finish lines
(2020)	line type and		bridges		/Izmir, Turkey)	Dental	C.	2.9/ 115-	8801, Instron,	(shoulder/chamfer):
	width on the	٠	Zinc oxide-	В.	Bis-GMA, UDMA, aromatic	Wings,		130	Ltd., England)	A. 1339/1160N
	fracture		based		polyvinyl ester resin,	Montreal,				B. 739.5/964.5
	resistance of		provisional		Barium glass, Silica, BHT,	Quebec,				C. 829.5/914
	provisional		cementation		Self-Healing and Pigment	Canada)				
	crowns, and to		(Cavex		Starters (Iron Oxide and	B/C: self-				
	determine the		Provisional		Titanium Dioxide)	mixing				
	suitable type of		Cement, Cavex,		(Acrytemp, Zhermack					
	crown material		Holland)		S.p.A./via Bovazecchino,					
	to use	٠	37 °C deionized		Italy)					
			distilled water	C.	Polyfunctional					
			for 24 h		methacrylates (48 wt.%),					
					inorganic fillers (47 wt.%),					
					additives, initiators,					

					stabilizers (5 wt.%) (Vivadent, Liechtens	, and Telio tein)	pigments CS, Ivoclar Schaan,									
Alp et al. (2019)	Comparison the flexural strength of different computer-aided design/ computer-aided manufacturing (CAD-CAM) PMMA based polymers and conventional interim resin materials after thermocycling.	•	In vitro The specimens were prepared in accordance with ISO 10477:2004 (Dentistry- Polymer-Based Crown and Bridge Materials) Stored in distilled water bath at 37°C for 24h Thermocycling (10,000 cycles, 5 to 55°C)	А. В. С. Е.	99.5% PM (Telio Vivadent Liechtenst PMMA, peroxide peroxide PM-Disc, GmbH, Germany) PMMA, and pigm PMMA, Volcja Dra Bis-GMA, polymer, particles, pigments ESPE, St. F PMMA ArtDentin GmbH,	AG, AG, CAD, AG, tein) as and Mer L dimed nents Polide aga, Si dime silica (Prote Paul, I (Art e, Me	pigments Ivoclar , Schaan, colourants, dibenzoyl MMA (M- rz Dental .utjenburg, thacrylates (Polident ent d.o.o, lovenia) ethacrylate zirconium and silane, emp 4, 3M MN) Concept erz Dental .utjenburg,	A/B/C: CAM (3Shape Copenha Denmar D/E: mixing	CAD- , agen, k) Self-	A. B. C. D. E.	2.9/ 115- 130 2,7/96.6 2.7/114 2.5/ 91- 116 1.7/90	3-point strength 100; Moc	flexural (MIN Idental)	Mean values: A. 10 B. 13 C. 11 D. 85 E. 66	flexural 6.2 MPa 1.9 3 .2 .1	strength
Karaokutan et al. (2015)	Evaluation the effect of the fabrication	• /	In vitro A master model with one crown	Α.	Yttrium Dioxide, Trioxide,	Triox Silica	kide, Foil Aluminum a Dioxide,	A: CAD ((Yenam D50,	-CAM ak	А. В. С.	1.2/210 1.2/130 2.5/140	Compress test (LS 50	sive load 00; Lloyd	Maxim (N): A. 11	um compre	ssive load

method	and		(2.5)	was		Sodium	Oxide,	Iron	Yenadent Ltd,	D.	N/A/ 90	Instruments,	Β.	843.71
material	type on		manufact	ured		Trioxide,	Zir	conium	Istanbul,	Ε.	2.5/65	West Sussex, UK)	C.	1392.1
the	fracture		from Cr-C	to alloy		Dioxide	(Cercon	base,	Turkey)	F.	N/A		D.	1009
strength	of	•	Distilled v	water at		DuguDen	t GmbH/	Hanau,	B/C/D/E/F:				Ε.	910
provision	al		37ºC for 2	24 hours		Germany)		Self-mixing				F.	711.09
crowns		•	Thermocy	vcled	В.	Polymeth	yl metha	icrylate						
			(5000 cyc	les, 5 to		(Imident,	Imicry	l Dis						
			55°C)			Malzeme	leri/Kony	a,						
						Turkey)								
					C.	Methacry	lates, a	amines,						
						terpenes,	ł	penzoyl						
						peroxide	and	BHT						
						(Structur	premium	, voco						
						GmbH/Cເ	uxhaven,							
						Germany)							
					D.	Polyfunct	ional							
						methacry	lates (48	wt.%),						
						inorganic	fillers (47	wt.%),						
						plasticize	rs, ini	tiators,						
						stabilizers	s and pigm	ients (5						
						wt.%), (S	ystemp	c&b II,						
						Ivoclar	Vi	vadent						
						AG/Schaa	an,							
						Liechtens	tein)							
					Ε.	Bis-GMA,	UDMA, ar	romatic						
						polyvinyl	ester	resin,						
						barium g	lass, Silica	a, BHT,						
						Self-Heali	ng and p	igment						
						Starters	(Iron Oxio	de and						
						Titanium	C	ioxide)						

				F.	(Acrytemp, Zhermack spA/Via Bovazecchino, Italy) Highly cross-linked methyl methacrylate (Takilon BBF, WP GmbH/Barmstedt, Germany)							
Çakmak et al. (2020)	Evaluation the flexural strength of different CAD- CAM PMMA based polymers and conventional interim resin materials, auto polymerized bis- acrylate composite resin and PEMA with and without a surface sealant after thermocycling	 In vitre Specin fabrica each accord 10477 (Denti polym crown venee mater Therm (10 00 distille (Buchi Water Fisher 	o nens were ated from material ling to ISO :2018 stry- er-based and ring ials) locycled 0 cycles in d water 461 Bath;	А. В. С. D.	PMMA and cross-linked polymers based on methacrylic acid esters; colorants; residual peroxide as dibenzoyl peroxide; MMA contained as residual monomer up to max. 1% (M-PM-Disc, Merz Dental GmbH) PMMA, pigments 1% (Polident-PMMA, Polident d.o.o) 99.5% PMMA, pigments (Telio CAD, Ivoclar Vivadent AG) Bis-GMA, UDMA, aromatic polyvinyl ester resin, Barium glass, Silica, BHT,	A/B/C: CAD- CAM (Dental System Software; 3Shape A/S) D/E: Self- mixing (Elite HD; Zhermack SpA)	A. B. C. E.	2,7/96.6 2.7/114 2.9/115- 130 2.5/65 N/A	3-point bend test (Lloyd LRX; Lloyd Instruments Ltd)	Mea (Mp •	n flexural strength a): CAD/CAM (31.11-34.8) Conventional m (15.79-15.92)	h values PMMA naterials

Bauer et al. (2020)	Evaluation the performance and fracture load of resin anterior implant- supported interim fixed partial dentures.	Scientific), 5 to 55°C) • In vitro • Three element bridges • Interim cement (Telio CS Link; Ivoclar Vivadent AG) • Thermocycling (2×1500 cycles, 5° to 55°C)	 Self-Healing and Pigment Starters (Iron Oxide and Titanium Dioxide) (Acrytemp, Zhermack SpA) E. L: isobutyl methacrylate, dibutyl phthlate, dimethyl-p-toluidine; P: dibenzoyl peroxide 5%, cadmium (nonpyrophoric) <2%, titanium dioxide 1% (Trim, Bosworth Co, Keystone Industries) A. 99.5% w/ PMMA, pigments (Telio CAD, Ivoclar Vivadent AG) B. DMA, 14% w/ inorganic filler (Vita CAD-temp, VITA Zahnfabrik, H. Rauter, GmbH & Co KG) C. DMA, 27 % w/ inorganic filler (Structur CAD, VOCO GmbH) D. DMA, 86.6% w/ inorganic filler (Gandio blocs, VOCO GmbH) 	A/B/C/D: CAD-CAM (CEREC Omnicam; Dentsply Sirona) E: Sel-mixing (Turbosil; Klasse 4 Dental GmbH)	A. 3.2/130 B. 2.8/80 C. 4.4/136 D. 18/330 E. 2.5/140	Compressive load test (1446; Zwick)	Maximum compressive load (N): A. 871 B. 644 C. 742 D. 987 E. 0 Fracture located: connector area (55%) or was a mixed fracture (23%)
		5º to 55ºC)	GmbH) D. DMA, 86.6% w/ inorganic filler (Gandio blocs, VOCO GmbH) E. DMA, >30% w/ inorganic filler Structur premium, VOCO GmbH)	GmbH)			fracture (23%)

Rayyan et al.	Comparison the	• In vitro	A. Yttrium Trioxide, Foil	A: CAD-CAM A. 1.2/210	4-point bending Maximum compressive load
(2015)	color stability,	• Epoxy replicas	as Dioxide, Aluminum	(S 50 Zenotec B. N/A	test (Accuforce (N):
	water sorption,	were made from	m Trioxide, Silica Dioxide,	CAD; Wieland C. 2.5/65	Elite test stand, A. 1289
	wear resistance,	a prepared	ed Sodium Oxide, Iron	Dental) D. N/A	Ametek) B. 996
	surface hardness,	maxillary first	st Trioxide, Zirconium	B/C/D: Self-	C. 899
	fracture	pre-molar	Dioxide (Base Cercon,	mixing	D. 1179
	resistance, and	Thermocycling	DeguDent GmbH)		Mean flexural strength values
	microleakage	(50 000 cycles, 5	5 B. P: PMMA L: MMA,		(MPa):
		to 60ºC)	methanol dimetacrylate		A. 142
		• Zinc oxide-based	ed accelerant UV light		B. 111
		interim cement	nt absorber (Alike, GC		C. 118
		(RelyX Temp NE;	_{E;} Europe)		D. 126
		3M ESPE)	C. Bis-GMA, UDMA, aromatic		
			polyvinyl ester resin,		
			Barium glass, Silica, BHT,		
			Self-Healing and Pigment		
			Starters (Iron Oxide and		
			Titanium Dioxide)		
			(Acrytemp, Zhermack)		
			D. Polyoxymethlene		
			Copolymer (Acetal		
			Copolymer), pigments		
			(DurAcetal, Myerson LLC)		
Peñate et al.	Comparison the	 In vitro 	A. 99.5% PMMA, pigments	A: CAD-CAM A. 2.9/ 115-	Compressive load Maximum compressive load
(2015)	marginal fit and	One maxillary	ry (Telio CAD, Ivoclar	(CEREC 130	test (Quasar 5 of (N):
	fracture	first premolar	ar Vivadent)	Bluccam; B. 2.5/500	5kN; Galdabini A. 515,8
	strengths of	and one molar	ar B. UDMA; Bis-GMA; benzoyl	Sirona Dental C. N/A	SPA) B. 208,9
	interim FDPs	were duplicated	ed peroxide (Structur 3,	System) D. N/A	C. 227,4
	fabricated by	to produce a	a VOCO GmbH)	B/C/D: Self-	D. 340,7
	using a direct			mixing	Reinforced:

	technique with different materials with interim prostheses (Telio CAD) made with CAD-CAM system.	•	metal master model Glass fiber was used to reinforce 10 interim FDPs: S3F; TMF; DLF Stored in water bath at 37°C for 24 hours Thermocycling (2500 and 5000 cycles, 5 to 55°C)	C.	 P: ethyl methacrylate prepolymers, benzoyl peroxide, pigments, titanium dioxide; L: isobutyl methacrylate, di- butyl phthalate, dimethyl- p-toluidine) (Trim, Bosworth) P: benzoyl peroxide, dialkyl phthalate, residual monomers, titanium dioxide, mineral pigment, pigment; L: methyl methacrylate), (Duralay Crown & Bridge (Reliance)) 					 B. 475,2 C. 471,3 D. 531,1
Leila et al.	Investigated	•	In vitro	Α.	PMMA (L-Temp Multicolor, Degos Dental)	A/B/C/D/E: CAD-CAM	A. B	2.1/80 2/80	3-point bending	(Dry/Water): (Mpa)
(2020)	properties of five	•	material, blocks	В.	PMMA-based DCL	(SEM; JSM	С.	1,8/70	Lloyds	A. 102/108
	CAD-CAM		were sectioned		material (SR Vivodent	5500, Jeol,	D.	1,8/70	Instruments,	B. 105/117
	materials used		using a water-	_	CAD, Ivoclar Vivadent)	Tokyo, Japan)	Ε.	2.2/100	Hampshire, UK))	C. 74/64
	for the		cooled diamond	C.	PMMA or polycarbonates-					D. 109/124
	novisional		saw (Struers		1% nigments (Temp hasic					E. 90/131 (Gna)
	restorations and		Ballerup.		Zirkonzahn)					(Gpu) A. 3/3.1
	tooth segments		Denmark) into	D.	PMMA or polycarbonates-					B. 3/3,7
	for digitally		equal bar-		based resins with approx.					C. 1.6/1.1
	fabricated		shaped. An		1% pigments					D. 2.2/2.7
	dentures		autopolymerizing							E. 2.8/4

		acrylic resin (Palapress, Kultzer, Hanau, Germany) was used as a base material into which the CAD- CAM materials were embedded • Adhesive resin cement (Relyx Unicem, 3M ESPE)	 (Multistratum flexible, Zirkonzahn) E. PMMA and pigments (ZCAD Temp Esthetic, Harvestdental) 				
Reymus et al.	Investigated the	In vitro Stool abutment	A. MMA (Experimental resin	A/B/C:	A. N/A B N/A/ 107	Compressive load	Maximum compressive load,
(2019)	print material,	 Steel abutment model imitating a 	Belgium)	(Rapidshape,	C. 2.3/100	Zwick, Ulm,	A. 585.4/746.4/874.3N
	build direction,	second premolar	B. MMA (NextDent C&B	Heimsheim,	D. N/A	Germany)	B. 775.9/1050.4/871.5
	post-curing, and	and a second	(CB), NextDent,	Germany)	E. 2.9/ 115-		C. 777.6/638.0/598.6
	fracture load of	molar	Soesterberg, Netherlands)	E: CAD-CAM	130 F 2/220		D. 609.6/868.2/6/8.4 F 881.4
	FDPs	(H2O, 21 davs. 37	C. Isopropylidenediphenol	Dentsply	1. 2/220		F. 551.7
		°C)	peg-2 dimethacrylate, 1,6-	Sirona,			
			hexanediol	Bensheim,			
			dimethacrylate, 2-	Germany)			
			hydroxyethyl	F: Self-mixing			
			methacrylate,	Post-cured:			

diphenyl(2,4,6- trimethylbenzoyl) DUO (GC phosphine oxide, Hydroxy propyl methacrylate, (2,4,6-trimethylbenzoyl)- phosphine oxide (7reeprint temp (FT), atmosphere Detax, Ettligen, Germany), Baierbrunn, D. MIMA (3Delta temp (DT), Germany) Deltamed, Friedberg, C-3DPrint Germany) Box E. 99,5% PIMMA, pigments (NextDent)
trimethylbenzoyl) DUO (GC phosphine oxide, Hydroxy Europe) propyl methacrylate, Otoflash (2,4,6-trimethylbenzoyl)- G171 with phosphine oxide (Freeprint temp (FT), atmosphere Detax, Ettligen, Germany), Baierbrunn, D. MMA (3Delta temp (DT), Germany) Deltamed, Friedberg, Germany) Box (NextDent) KoxtDent)
phosphine oxide, Hydroxy Europe) propyl methacrylate, Otoflash (2,4,6-trimethylbenzoyl)- G171 mith phosphine oxide nitrogen (Freeprint temp (FT), atmosphere Detax, Ettligen, (NK Germany), Baierbrunn, D. MMA (3Delta temp (DT), Germany) Box E. 99,5% PMMA, pigments (NextDent)
propyl methacrylate, Otoflash (2,4,6-trimethylbenzoyl)- G171 with phosphine oxide nitrogen (Freeprint temp (FT), atmosphere Detax, Ettligen, (NK Optik, Germany), Baierbrunn, Baierbrunn, D. MMA (3Delta temp (DT), Germany) Deltamed, Friedberg, LC-3DPrint Germany) Box E. Sork E. 99,5% PMMA, pigments (NextDent) (NextDent) (NextDent)
(2,4,6-trimethylbenzoyl)- G171 with phosphine oxide nitrogen (Freeprint temp (FT), atmosphere Detax, Ettligen, Germany), Baierbrunn, Deltamed, Friedberg, LC-3DPrint Germany) Box E. 99,5% PMMA, pigments (NextDent)
phosphine oxide (Freeprint temp Detax, Ettligen, Detax, Ettligen, Germany), Baierbrunn, D. MMA (3Delta temp (DT), Detamed, Friedberg, C-3DPrint Germany) Box E. 99,5% PMMA, pigments (NextDent)
(Freeprint temp (FT), atmosphere Detax, Ettligen, (NK Optik, Germany), Baierbrunn, D. MMA (3Delta temp (DT), Germany) Deltamed, Friedberg, LC-3DPrint Germany) Box E. 99,5% PMMA, pigments (NextDent)
Detax, Ettligen, Germany), Baierbrunn, D. MMA (3Delta temp (DT), Deltamed, Friedberg, LC-3DPrint Germany) Box E. 99,5% PMMA, pigments (NextDent)
Germany), Baierbrunn, D. MMA (3Delta temp (DT), Germany) Deltamed, Friedberg, LC-3DPrint Germany) Box E. F. 99,5% PMMA, pigments (NextDent)
D. MMA (3Delta temp (DT), Germany) Deltamed, Friedberg, Germany) Box E. 99,5% PMMA, pigments (NextDent)
Deltamed, Friedberg, LC-3DPrint Germany) Box E. 99,5% PMMA, pigments (NextDent)
Germany) Box E. 99,5% PMMA, pigments (NextDent)
E. 99,5% PMMA, pigments (NextDent)
(Tello CAD, Ivociar-
Vivadent)
F. Glass filler in a matrix of
multifunctional
methacrylates, catalysts,
stabilizers, additives
(Luxatemp, DMG,
Hamburg, Germany)
Rosentritt et Investigated the • In vitro A. 99.5% PMMA, pigments A: CAD-CAM A. 2.9/115- Compressive load Maximum compressive load
al. performance and • All crowns were (Telio CAD, Ivoclar (Cerec, 130 test (1446, Zwick) (N), "P/T":
(2017) fracture either Vivadent, Schaan, FL) MCXL, Sirona, B. 2.9/115- Tooth: 3034,3/1602,9
resistance of a permanently B. Bis-EMA, UDMA, Bis-GMA, G) 130 Labside (Telio CAD):
temporary CAD- bonded ("P", TEGDMA, 20nm silica filer, B/C/D: Self- C. 1,2/160 1510,5/963,6
CAM and CAD- Multilink 4 to 11nm zirconia filer, mixing D. 1.8/50 Labside: 2691,1/2064,5
CAM-PMMA, Automix, Ivoclar zirconia/silica cluster filer Chairside: 1609,4/1253,0
material as Vivadent) or (Filtek Supreme XTE flow,
implant or tooth- temporarily

	supported single crown with respect to the clinical procedure	•	bonded ("T", Telio CS Link, Ivoclar Vivadent) Thermocycling (2 × 3000 cycles, 5 to 55 °C distilled water)	C.	3M Oral Care, St. Paul, USA) 55–56% DMA, ~43% inorganic fillers, catalysts, stabilizers, pigments (Telio CS, Ivoclar Vivadent, Schaan, FL) 32–33% DMA, HEMA, ~65% inorganic fillers (barium glass, ytterbium), Ba-Al-fluorosilicate glass, catalysts, stabilizers, pigments (Multilinik automix, Ivoclar Vivadent, Schaan, FL)					
Digholkar et al. (2016)	Evaluation and compare the flexural strength and microhardness of provisional restorative materials fabricated utilizing rapid prototyping (RP), CAD-CAM and conventional method	•	In vitro To fabricate the samples the specimens were designed as per the dimensions using the CAD software and computer file in STL format was prepared and kept ready to be utilized by the respective units	А. В. С.	P: PMMA, PEMA, Dibenzoyl peroxide L: Methylmethacrylate, 2- Hydroxyethyl-Methacrylat (Pattern resin, GC Corporation, Japan) PMMA, transverse polymers based on satril acid, residual peroxide and MMA (Ceramill TEMP, AmannGir rbach, AG, Austria) Multifunctional acrylic resins and fillers of 0.04-	B: CAD-CAM A: Self-mixing C: RP (EnvisionTECs Perfactory® 4 Standard 3D)	A. B. C.	2/63 2.7/91.5 4.5/100	3-point bending test (Star Testing System, India. Model No. STS 248)	Mean flexural strength values: A. 95.58MPa B. 104.20 C. 79.54

			for milling and 3D		0.7-micron sized particles					
			printing		of inorganic fillers					
					(Envision TEC's E-Dent					
					100)					
Gopichander	Evaluation the	٠	In vitro	Α.	P: PMMA L: Methyl	CAD-CAM	Α.	5/60	Compressive load	Mean modulus of elasticity
et al.	effectiveness of	٠	A wax pattern of		methacrylate monomer,	(MTAB XL	В.	5/65	test (LR 100 K,	values (Un/ Reinforcement):
(2015)	polyester fiber		a definite size,		Hydroquinone (DPI heat	MILL, MTAB	C.	2.5/77	Lloyd; U.K., CIPET,	A. 624/ 700.2 GPa
	reinforcement on		shape, and lesser		cure, India)	Engineers			Guindy, India)	B. 218.02/594.03
	different interim		anatomic details	Β.	P: PMMA L: Methyl	Private				C. 680/ 707.99
	FPD materials		of a three-unit		methacrylate monomer,	Limited,				Mean modulus of elasticity
			resin bonded FPD		Hydroquinone (DPI-RR	Chennai,				values (Un/ Reinforcement):
			consisting of the		cold cure, India)	India)				A. 981.01/2493.01MPa
			second premolar,	C.	L: MMA, accelerant, UV-	A/B/C: Self-				B. 592/979.86
			first molar and		light absorber,	mixing				C. 1800.06/2807
			second molar		dimethacrylate P:					
			was made on the		dibenzoyl peroxide, iron					
			aluminum die.		(III) oxide (Unifast Trad –					
			Were made with		GC Corporation, Tokyo,					
			polyester fiber		Japan)					
			reinforcement							
			(particle size of							
			100 lm, Indian							
			Institute of							
			Technology,							
			Chennai)							

Reeponmaha	Evaluation the	In vitro	Α.	PMMA (Brylic Solid,	A/B: CAD-	Α.	2/120	Compressive load	Maximum compressive load
et al.	fracture strength	• A maxillary right		Sagemax bioceramics,	CAM (3Shape	В.	2.3/100	test (Lloyd LR10K,	(N):
(2020)	and fracture	first molar		WA, USA)	TRIOS,	C.	2.5/77	Ametek, FL, USA)	A. 953.60
	patterns of	dentoform tooth	В.	Isopropylidenediphenol	Copenhagen,	D.	2.5/ 91-		B. 1004.19
	provisional	(Nissin Dental		peg-2 dimethacrylate, 1,6-	Denmark)		116		C. 657.87
	crowns	Product Inc.,		hexanediol	C/D: Self-				D. 1125.94
	fabricated from	Tokyo, Japan)		dimethacrylate, 2-	mixing				
	different	Temp-bond NE		hydroxyethyl					
	materials and	(Kerr Dental,		methacrylate,					
	techniques after	Brea, CA, USA)		diphenyl(2,4,6-					
	receiving stress	Thermocycled		trimethylbenzoyl)					
	from a simulated	(5,000 cycles, 5		phosphine oxide, Hydroxy					
	oral condition	to 55°C)		propyl methacrylate,					
		Cyclic occlusal		(2,4,6-trimethylbenzoyl)-					
		load (100 N at 4		phosphine oxide					
		Hz for 100,000		(Freeprint Temp, Detax					
		cycles)		GmbH, Ettlingen,					
				Germany)					
			C.	L: MMA, accelerant, UV-					
				light absorber,					
				dimethacrylate P :					
				dibenzoyl peroxide,					
				iron(III) oxide (Unifast					
				Trad, GC chemicals,					
			_	Tokyo, Japan)					
			D.	Base paste:					
				Dimethacrylate					
				(BISEMIA6), Silane treated					
				amorphous silica,					
				Reaction production					

					products of 1.6-							
					diisocvanatohexane with							
					2-(2-methacrylovl)ethyl].							
					6- hydroxyhexanoate and							
					2-							
					– hvdroxvethvlmethacrvlate							
					(DESMA). Silane treated							
					silica. Catalyst paste:							
					Ethanol, 2,2'- [(1-							
					methylethylidene) bis							
					(4,1-phenyleneoxy)] bis-,							
					diacetate, Benzyl-phenyl-							
					barbituric acide, silane							
					treated silica, Tertbutyl							
					peroxy-3,5,5-							
					trimethylhexanoate							
					(Protemp 4, 3M ESPE,							
					Seefeld, Germany)							
Dureja et al.	Evaluation and	•	In vitro	Α.	PMMA within 14% (wt)	A: Exocad	Α.	2.8/80)	Compressive load	Me	ean flexural strength value:
(2018)	compare the	•	A mandibular left		inorganic filler (Vita CAD-	(GmbH,	В.	2.5/	91-	test (Asian UTM,	Α.	94.06MPa
	vertical marginal		first molar (36		temp blocks)	Darmstadt,		116		LRX 2K5, Hants,	В.	101.41
	fit and flexural		typodont tooth;	В.	Bis-GMA, dimethacrylate	Germany);				UK)		
	strength of		Nissin, Germany)		polymer, zirconium	3D software						
	provisional		was prepared for		particles, silica and silane,	(3D biocad,						
	crowns prepared		a full ceramic		pigments (Protemp 4, 3M	Renton, WA)						
	using CAD-CAD		crown:		ESPE, Seefeld, Germany)	B: Self-mixing						
	temporary		A: 20 blocks									
	material versus		made from CAD-									
	those fabricated		CAM-Temp									
	using bis-acrylic		blocks; three-									

	composite-based autopolymerizing resin material	dimensional digital model B: Blocks was prepared using modeling wax								
Mehrpour et al.	Comparison the flexural strength	 In vitro A Plexiglas split 	A. Gla 1,6	lass, oxide, chemicals, 6-Hexanediol	A: Dual-cured B/C/D: Self-	А. В.	1.8/250 2.5/ 91-	3-point test	bending	Hexural strength: A. 120 MPa
(2016)	of five interim	model was used	dir	methacrylate, dibenzoyl	cured		116			B. 113
	restorative	to make	pe	eroxide, benzoyl	E: Light-cured	C.	2/70			C. 64,2
	materials	specimens	pe Po	eroxide (TempSpan,		D. F	N/A 1 /11/59 3			D. 63,73 F 40.7
		 Interniocycled (2500 cycles, 5 to 	CA	A, USA)		L.	1.41/00.0			2. +0,7
		55°C)	B. Bis	s-GMA, dimethacrylate						
		• Stored in artificial	ро	olymer, zirconium						
		saliva at 37ºC for	pa	articles, silica and silane,						
		2 weeks	្រារូ ES	SPE. AG. Seefeld.						
			Ge	ermany)						
			C. L:	Methyl methacrylate, N,						
			N-	-dimethyl-p-toluidine,						
			dir	mylenegiycol methacrylate.						
			Pro	ropylidynetrimethyl						
			tri	imethacrylate, 2-(2H-						
			be	enzotriazol-2-yl)-p-						
			Cre by	esol, Butylated						
			ny	yuroxytoluene, 6-tert-						

			butyl-2,4-xylenol; P: ethyl-		
			methyl metacrilate		
			polymer, PMMA,		
			barbituric acid derivative,		
			organic copper		
			compound, pigments		
			(Unifast III, GC		
			corporation, Tokyo,		
			Japan)		
			D. P : ethyl methacrylate		
			prepolymers, benzoyl		
			peroxide, pigments,		
			titanium dioxide; L:		
			isobutyl methacrylate, di-		
			butyl phthalate, dimethyl-		
			p-toluidine (Trim,		
			Bosworth company,		
			Skokie, USA)		
			E. UDMA, trimethacrylate		
			(Revotek LC, GC		
			corporation, Tokyo,		
			Japan)		
Lee et al.	Compare the	 In vitro 	A. L: isobutyl methacrylate,	A/C: Auto A. N/A	4-point bend Gpa (0,5/5/10mm)
(2020)	material	• 3-unit fixed	dibutyl phthlate,	polymerizing B. 2.3/101.4	test (Instron A. 0,95/1,37/1,43
	stiffness,	dental	dimethyl-p-toluidine; P:	B: Dual C. 3.2/80	5567; Instron B. 3,52/3,92/4,31
	material	prostheses with a	dibenzoyl peroxide 5%,	polymerizing	Corp) C. 2,58/3,19/3,38
	strength, and	modified-ridge	cadmium <2%, titanium		Mpa (0,5/5/10mm)
	structural	lap pontic were	dioxide 1% (Trim, Harry J		A. No failure/ No failure/70
	strength of	fabricated	Bosworth Co)		B. 131/133/127
	interim 3-unit				C. 113/111/97

	fixed dental	٠	3 loading rates of	В.	PASTE A: UEDMA 25-50%,						
	prostheses		0.5, 5, or 10		DMA 20-25%, DMA						
	fabricated from 3		mm/min		component 10%,						
	interim materials	•	Stored 24 hours		photoinitiator <0.5%,						
	when stressed at		in 100% humidity		mequinol<0.5%, activator						
	different loading		at 37ºC		<0.5%, amorphous silicon						
	rates.				dioxide, butylated						
					hydroxytoluene, titanium						
					dioxide, iron (III) oxide;						
					PASTE B: UEDMA 50-70%,						
					component DMA 10-20%,						
					butylated hydroxytoluene						
					<0.5%, amorphous silicon						
					dioxide (TempSmart, GC						
					America)						
				C.	Barium boron alumino						
					sillicate glass,						
					Hydrophobic amorphous						
					fumed silica, methacrylate						
					monomers, Polymerizable						
					dimethacrylate resin,						
					Catalyst, Stabilizers						
					(Integrity, Dentsply						
					Sirona)						
Singh et al.	To evaluation	•	In vitro	Α.	PMMA (DPI self-cure	A/B/C/D/E/F:	Α.	N/A		3-point bending	Maximum compressive load,
(2016)	and compare the	•	Six temporary		tooth molding powder,	Self-mixing	В.	N/A		test (Instron)	8 days (N):
	flexural strength		crown and bridge		The Bombay Burmah		С.	N/A			
	ot provisional		materials		Trading Corp. Ltd., Batch		D.	2.5/ 9	91-		PPMA group:
	crown and bridge		available		3152, Mumbai, India)			116			• DPI 35,56
	materials		commercially at				Ε.	1.8/70			• SC10 25,41

available	24 hours, 8 days	Β.	PMMA (SC10 tooth	F. 2/250	• Trulon 35,42
commercially	and after repair		colored cold cure, Jagdish		
	• A custom-made		Lal Sethi Company, Batch		Bis acrylic group:
	metal mold was		SC411, Wazirpur, Delhi,		• Protemp 35,83
	used for making		India)		Cooltemp 37,77
	specimens	C.	PMMA (Trulon, Jayna		Luxatemp 36,28
	 Artificial saliva 		Industries, Ghaziabad,		
	for 24 hours		UP, India)		
		D.	Dimethacrylate (BIS-		
			MEPP), modified Silica,		
			Methacrylated		
			polyurethane, Silane		
			treated silica (Protemp 4,		
			3M ESPE, Lot 559121,		
			Germany)		
		Ε.	Methacrylates,		
			Bariumglass silanized,		
			Amorphous silica		
			hydrophobed (Cooltemp,		
			Coltene Whaledent, Lot		
			F27307, Article no- 5805,		
			Switzerland)		
		F.	Base paste: Acrylic resin		
			glass power silica; Catalyst		
			paste: Urethane		
			dimethacrylate, Aromatic		
			dimethacrylate, Glycol		
			methacrylate (Luxatemp		
			fluorescence, DMG, Lot		

					705679, Hamburg,								
					Germany)								
Kadiyala et	To evaluation the	٠	In vitro	Α.	PMMA (Dental Products	A/C: Auto	Α.	N/A	3-point	bending	Mea	an flexural	strength
al.	flexural strength	٠	A customized 3-		of India Ltd., Mumbai,	polymerizing	В.	N/A	test		valu	ies:	
(2016)	of different		piece brass flask		India)	B: Heat cure	C.	3.2/80			Α.	79,13MPa	
	provisional		was machined,	В.	PMMA (Dental Products	D: Light cure	D.	1.41/59.3			В.	91,86	
	restorative resins		compromising		of India Ltd., Mumbai,						C.	102,98	
	used for		four equal sized		India)						D.	60,01	
	prosthetic		mold spaces	C.	Barium boron alumino								
	rehabilitation	٠	Thermocycling		sillicate glass,								
			for 2500 cycles		Hydrophobic amorphous								
			(5°C to 55°C)		fumed silica, methacrylate								
		٠	Stored in artificial		monomers, Polymerizable								
			saliva for 14 days		dimethacrylate resin,								
					Catalyst, Stabilizers								
					(Integrity, Dentsply Caulk,								
					USA)								
				D.	UDMA, trimethacrylate								
					(Revotek, GC								
					Corporation, Japan)								
Schwantz et	Characterization	•	In vitro	Α.	Polyfunctional	A/B/C/D: Self	A.	1.7/90	Compres	ssive load	Ave	rage of 3 days:	_
ai. (2017)	and compare	•	Paste and		methacrylates (48 wt.%),	mixing	В.	2.5/ 91-	test	(DL500;	A.	8,6GPa/ 42,3M	Ра
(2017)	four commercial		catalyst pastes of		inorganic fillers (47 wt.%),			116	EMIC, S	são José	B.	9,6/53,4	
	bis-acryl		each bis-acryl		plasticizers, initiators,		С.	1.8/90	dos Pin	hais, PR,	C.	4,7/34,2	
	composite resins		composite resin		stabilizers and pigments (5		D.	2.6/90	Brazil)		D.	4,7/30,2	
	using optical,		were mixed with		wt.%) (Systemp C&B II,								
	surface, physical-		dispensing guns		lvoclar vlvadent, Schaan,								
	cnemical and		and automix		Liechtenstein)								
	mechanical		syringes and	в.	Dimethacrylate (BIS-								
	analyses		placed into		ivierr), modified Silica,								

Parri et al. Evaluation the • Invitro A. PMMA groups, inorganic filler, catalyst, stabilizer, preservative and pigments (Proviplast, Biodinamica, Ibior3, PR, Brazil) • Invitro A. N/A Soport bending Parri et al. Evaluation the • Invitro A. PMMA groups, inorganic filler, catalyst, stabilizer, preservative and pigments (Proviplast, Biodinamica, Ibior3, PR, Brazil) • Invitro A. PMMA, Chicago, Illinois) • A. 1.64/1.85/2.05/3.176Pa Parimet at al. Evaluation the effect of three different fiber: STICK (Stick Technor groups prempregnated, preinpregnated, preservative and pigments (Proviplast, Biodinamica, premovinge, Biors, POLYDENTIA glass fibers on POLYDENTIA glass fibers on POLYDENTIA glass fibers on POLYDENTIA B P. Petri et http://premovinge. • Premovingenet titter, benevitier,			molds of		Methacrylated							
Psarri et al. Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, preimpregnated, preimpregnated, preimpregnated, preimpregnated, preimpregnated, preimpregnated, presvince presvince persvince pre			nolwinyl		nolyurothano Silano							
Psari et al. Evaluation the different methods of fiber efferent glass fibers non- preimpregnated, preimpregnated, premovemated, glass fibers non- preimpregnated, premovemated, glass fibers non- preimpregnated, premovemated, glass fibers non- preimpregnated, premovemated premovemated, premovemated pre			polyvillyi		polyuretriarie, Silarie							
Psarri et al. Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, processon and so days			siloxane		treated silica (Protemp 4,							
Psarri et al. Evaluation the • In vitro A. PMMA, 2-Hydroxyethyl, different methods of fiber reinforcement fiber: STICK (Stick groups, fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, prepolymers, benzoyl A. N/A A. N/A 3-point bending test, fibers non- previde, dimethacrylate, glass fibers non- previde, dimethacrylate, glass fibers non- preimpregnated, prepolymers, benzoyl A. Peroxide, glass fibers non- previde, fiber strick (Stick test, control (Polydentia SA, control) A. Polydobit control provide, dimethacrylate previde, previ			Impression		SIVI ESPE, St.Paul, IVIN,							
Psarri et al. Evaluation the effect of three of three reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, provide, bit and the preservative fiber of the preimpregnated, provide, bit and the preservative fiber of the preimpregnated, provide, bit and the preservative fiber of three preimpregnated, provide, bit and the preservative fiber of three preimpregnated, provide, bit and the preservative fiber of the preimpregnated, provide, previde, previde			material (Scan		USA)							
Pelotas, RS, Brazil) benzoyl peroxide, dimethacrylates, glass paticles (Structur Z, at 37 °C for 1, 15 and 30 days benzoyl peroxide, dimethacrylates, glass paticles (Structur Z, at 37 °C for 1, 15 and 30 days benzoyl peroxide, dimethacrylates, glass paticles (Structur Z, at 37 °C for 1, 15 and 30 days benzoyl peroxide, dimethacrylates, glass paticles (Structur Z, dat groups, inorganic filler, catalyst; stabilizer preservative; Base: DMA groups, inorganic filler, catalyst; stabilizer, preservative and pigments (Proviplast, Biodinamica, biporă, PR, Brazil) A. N/A 3-point bending control/Polydentia/ Psarri et al. (2020) Evaluation the effect of three different (glass fibers preinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, effect of three differs fiber • <i>In vitro</i> (N, B, C) Tech ttd), PolyDeNTIA A. PMMA, 2-Hydroxyethyl A. PMMA, 2-Hydroxyethyl B. N/A 3-point bending Exclusion B. N/A Control/Polydentia/ B. N/A Polytoperital glass fibers non- preimpregnated, end Manufacturing Pol			Denso; Yller,	С.	Bis-GMA, BHT, amines,							
Psarri et al. (2020) Evaluation the effect of three different (glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, • Stored in water at 37 °C for 1, 15 and 30 days dimethacrylates, stabilizer (Structur 2, Voco, Cuxhaven, Germany) D. Catalysts: DMA groups, inorganic filler, catalyst, stabilizer, preservative and pigments (Proviplast, Biodinamica, Ibipo73, PR, Brazil) B. N/A S-point bending control/Polydentia/ BBOND/Stick: Psarri et al. (2020) Evaluation the effect of three different (glass fibers non- preimpregnated, glass fibers non- preimpregnated, • /n vitro (A, B, C) A. PMMA, 2-Hydroxyethyl (A, B, C) A/B/C: Self. Dimethyl-p-Toluidine (IET, Lang Dental Manufacturing Co., Chicago, Illinois) A. Pic ethyl methacrylate, prepolymers, benzoyl prepolymers, benzoyl prepolymers, benzoyl previde, pigments, training 3-point bending Control/Polydentia/ B. N/A Control/Polydentia/ BBOND/Stick:			Pelotas, RS,		benzoyl peroxide,							
 Stored in water at 37 °C for 1, 15 and 30 days Catalysts: DMA groups, inorganic filler, catalyst, stabilizer and preservative; Base: DMA groups, inorganic filler; catalyst; stabilizer, preservative and pigments (Proviplast, Biodinamica, libiporă, PR, Brazil) Psarri et al. (2020) Evaluation the effect of three different methods of fiber reinforcement (glass fibers preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, Morticoli (Stiructur 2, Cutalyst; DMA groups, inorganic filler, catalyst, stabilizer and preservative; Base: DMA groups, inorganic filler, catalyst; stabilizer, preservative and pigments (Proviplast, Biodinamica, libiporă, PR, Brazil) Methacrylate, N, N- Dimethyl-p-Toluidine (JET, tang Dental Manufacturing Co, Chicago, Illinois) P: ethyl methacrylate prepolymers, benzovi peroxide, pigments, prepolymers, benzovi peroxide, pigments, preimpregnated, Methacrylate, N, Pi titanium divide: L: 			Brazil)		dimethacrylates, glass							
Psarri et al. (2020)Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, glass fibers non- preimpregnated, preimpregnated, presorvative• In vitro A.A.PVMMA, 2-Hydroxyethyl Manufacturing Co., Co., Co., Co., Co., Co., Co., Co., Co., Co., Co., Co., Co., Co., Perolymers, benzoyl presorvative, biogrammers, benzoylA.N/A Provipes, Perolymers, Co., Co., Co., Co., Co., Co., Prepolymers, benzoyl prepolymers, benzoyl perovide, perovide, perovide, perovide, benzoyl perovide, perovide, pe			• Stored in water		particles (Structur 2,							
Psarri et al. (2020)Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, 			at 37 °C for 1, 15		Voco, Cuxhaven,							
Psarri et al. (2020)Evaluation the effect of three methods of fiber reinforcement (glass fibers preservative)•In vitro AA.PMMA, 2-Hydroxyethyl Methacrylate, N, N, Dimethyl-p-Toluidine (JET, lang persolution)A/B/C: Self- AA.N/A test3-point bending test (Instron B.Control/Polydentia/ IBBOND/Stick:Psarri et al. (glass fibers preimpregnated, preimpregnated, preservative•In vitro (A, B, C)A.PMMA, 2-Hydroxyethyl Methacrylate, N, N, test (Instron (Chicago, Illinois)A/B/C: Self- N, N, mixingA.N/A test (Instron BLOKINGHARSHIC, England)Control/Polydentia/ IBBOND/Stick:PolyDeNTIA glass fibers non- preimpregnated, preimpregnated, premovingP.ethyl methacrylate prepolymers, benzoyl peroxide, pigments, titanium, dioxide: titanium, dioxide: titanium, dioxide: titanium, dioxide:A.N/A testSopoint bending test (Instron Lang DetailControl/Polydentia/ IBBOND/Stick: England)Control/Polydentia/ IBBOND/Stick: C. 62.2/77.1/73.8/151.1Polydentia SA, premovingPOLYDENTIA peroxide, pigments, benzoyl peroxide, pigments, benzoyl peroxide, pigments, benzoyl peroxide, pigments, benzoylIIIA.1.64/1.85/2.05/3.17GPa B.A.1.66/2.21/1.93/3.01			and 30 days		Germany)							
Psarri et al. (2020)Evaluation the effect of three different methods of fiber reinforcement (glass fibers preimpregnated, preimpregnated, preimpregnated, preimpregnated, preimpregnated, preminered,				D.	Catalysts: DMA groups,							
Psarri et al. (2020)Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated,In vitro A.A.PMAA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Chicago, Illinois)A.N/A B.Sale A.A.N/A B.Sale A. <th></th> <th></th> <th></th> <th></th> <th>inorganic filler, catalyst,</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					inorganic filler, catalyst,							
Psarri et al. (2020)Evaluation the effect of three different reinforcement (glass fibers non- preimpregnated, presider and (Polydentia SA, premipregnated, presider and (Polydentia SA, premipregnated, presider and premipregnated, presider and premipregnated, presider and premipregnated, presider and presider					stabilizer and							
Psarri et al. (2020)Evaluation the effect of three different reinforcement• In vitro (A, B, C) reinforced with fiber: STICK (Stick preservative and pigments (Proviplast, Biodinamica, Ibiporā, PR, Brazil)A/B/C: Self- mixingA. N/A B. N/A3-point bending test (Instron Buckinghamshire, B. 34.9/44.8/58.1/75Control/Polydentia/ IBBOND/Stick: C. 2.5/ 91- 116S-point bending test (Instron Buckinghamshire, England)Control/Polydentia/ IBBOND/Stick: C. 62.2/77.1/73.8/151.1Psarri et al. (2020)Evaluation the effect of three different (G, B, C)• In vitro (A, B, C) Dimethyl-p-Toluidine (JET, Itang Dental B. P: ethyl methacrylate preimpregnated, glass fibers non- preimpregnated, preimpregnated, CH-6805A. PMMA, 2-Hydroxyethyl Dimethyl-p-Toluidine (JET, Dimethyl-p-Toluidine (JET, Chicago, Illinois)A/B/C: Self- mixingA. N/A B. N/A C. 2.5/ 91- 1163-point bending test (Instron Buckinghamshire, England)Control/Polydentia/ IBBOND/Stick: C. 62.2/77.1/73.8/151.1PolyDetTIA glass fibers non- preimpregnated, preimpregnated, PolyDettia SA, Polydentia SA, Peroxide, pigments, Teth ult and diovide: Dimethyl-peroxide, pigments, presonvelower divide: Litanium diovide: Litanium diovide:A. N/A A. I.64/1.85/2.05/3.176Pa B. 0.78/1.06/1.16/1.55 C. 1.66/2.21/1.93/3.01					preservative; Base: DMA							
Psarri et al. (2020)Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated,• In vitro (A, B, C)A. PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Dimethyl-p-Toluidine (JET, Preinforcement (glass fibers non- preimpregnated, PolyDetNTIA• In vitro (A, B, C)A. PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Chicago, Illinois)A/B/C: Manufacturing Co., Chicago, Illinois)A. N/A3-point bending test (Instron Buckinghamshire, England)Control/Polydentia/ IBBOND/Stick: C. 2.5/ 91- Buckinghamshire, B. 34.9/44.8/58.1/75 C. 62.2/77.1/73.8/151.1PolyDeNTIA glass fibers non- preimpregnated, PolyDenTIAB.P: ethyl methacrylate prepolymers, benzoyl peroxide, pigments, peroxide, pigments,A.N/A3-point bending test (Instron B. N/AControl/Polydentia/ test (Instron Co, Buckinghamshire, England)C.C.2.5/91-116116Buckinghamshire, B. 34.9/44.8/58.1/75B.34.9/44.8/58.1/75C.116116Buckinghamshire, B.3.4.9/44.8/58.1/75C.62.2/77.1/73.8/151.1C.116Fiber116Buckinghamshire, B.8.0.78/1.06/1.16/1.55C.1.64/1.85/2.05/3.17GPa B.9.0.78/1.06/1.16/1.55C.1.66/2.21/1.93/3.01					groups, ionorganic filler;							
Psarri et al. (2020)Evaluation the effect of three different methods of fiber reinforcement (glass fibers non- preimpregnated, preimpregnated, preimpregnated, preimpregnated, CH-6805• In vitroA. PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Dimethyl-p-Toluidine (JET, reinforcement (glass fibers non- preimpregnated, preimpregnated, cH-6805• In vitroA. PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Chicago, Illinois)A/B/C: Self- MANUFACURINGA. N/A3-point bending test (Instron Buckinghamshire, Buckinghamshire, England)Control/Polydentia/ IBBOND/Stick:PollYDENTIA Preimpregnated, Preimpregnated, Preimpregnated, Preimpregnated, CH-6805P. ethyl methacrylate preolymers, benzoyl peroxide, pigments, titanium dioxide: Litanium dioxide:A.N/A A.3-point bending test (Instron Buckinghamshire, B. N/A3-point bending test (Instron Co, Buckinghamshire, England)Control/Polydentia/ IBBOND/Stick: C. 2.5/ 91-Manufacturing preimpregnated, preimpregnated, preimpregnated, preimpregnated, CH-6805A.P.Ethyl methacrylate pigments, preimpregnate, preimpregnate, titanium dioxide: Litanium dioxide:S.N/AS-point bending test (Instron A.S-point bending test (Instron B.Control/Polydentia/ test (Instron A.MatrixMatrixP.Ethyl methacrylate preimpregnate, titanium dioxide: Litanium dioxide: Litanium dioxide:A.N/AS.S.S.MatrixMatrixMatrixMatrix<					catalyst; stabilizer,							
Psarri et al. (2020)Evaluation the effect of three different• In vitroA.PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, preimpr					preservative and pigments							
Psarri et al. (2020)Evaluation the effect of three differentIn vitroA.PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, reinforcement (glass fibers non- preimpregnated, glass fibers non- preimpregnated, preimpregnated,A.PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Manufacturing Co., Prepolymers, benzoylA.N/A3-point bending test (InstronControl/Polydentia/ IBBOND/Stick:Image: Dental methods of fiber reinforcement glass fibers non- preimpregnated, preimpregnated,Manufacturing Co., Prepolymers, benzoyl peroxide, pigments,A.N/A4467; Instron Co, Buckinghamshire, England)A.71.4/97/100.5/174.1MPaImage: Dental methods of fiber reinforcement glass fibers non- preimpregnated, preimpregnated, premorement (Polydentia SA, premorement premorement (Polydentia SA, prepolymers, benzoyl peroxide, pigments,A.N/A3-point bending test (InstronControl/Polydentia/ test (InstronMatronicoMatronicoMatronicoNAA/B/C: MatronicoSelf- MatronicoA.N/ASelf- testA.N/AMatronicoMatronicoMatronicoNASelf- AA.N/ASelf- testA.N/AMatronicoMatronicoNNASelf- testA.N/ASelf- testA.A.Self- testA.Self- testA.Self- testA.Self- testA.Self- testA.Self- test <t< th=""><th></th><th></th><th></th><th></th><th>(Proviplast, Biodinamica,</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>					(Proviplast, Biodinamica,							
Psarri et al. (2020)Evaluation the effect of three differentIn vitroA.PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, reinforced with (A, B, C)A. PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, reinforcementA. N/A3-point bending test (InstronControl/Polydentia/ IBBOND/Stick:methods of fiber reinforcement (glass fibers preimpregnated, preimpregnated, preimpregnated, preimpregnated, preimpregnated, (CH-6805A. PMMA, 2-Hydroxyethyl Methacrylate, N, N- Dimethyl-p-Toluidine (JET, Dimethyl-p-Toluidine (JET, C. 2.5/ 91-Self- testA. N/Atest(InstronIBBOND/Stick:Imation methods of fiber reinforcement (glass fibers non- preimpregnated, preimpregnated, POLYDENTIALang Chicago, Illinois)Dental Co., Chicago, Illinois)Interview Co., Chicago, Illinois)Interview Co., Chicago, Illinois)Self- mixingA. N/A3-point bending testControl/Polydentia/ testMethacrylate preimpregnated, preimpregnated, preimpregnated, CH-6805Dental Peroxide, pigments, peroxide, pigments, titanium dioxide: LitherA. N/AS-point bending testS-point bending testControl/Polydentia/ testSelf- testMethacrylate preimpregnated, preimpregnated, preimpregnated, preimpregnated,POLYDENTIA CH-6805B. P: ethyl methacrylate peroxide, pigments, titanium dioxide: LitherSelf- testA. N/AS-point bending testS-point bending testS-point bending testMetrovico testCH-6805peroxide, pigments,					lbiporã, PR, Brazil)							
(2020)effect of three different• Control groups (A, B, C)Methacrylate, N, N- Dimethyl-p-Toluidine (JET, reinforced with fiber: STICK (StickmixingB. N/Atest(InstronIBBOND/Stick:methods of fiber reinforcement (glass fibers preimpregnated, preimpregnated, preimpregnated, preimpregnated, preimpregnated, CH-6805• Control groups Dimethyl-p-Toluidine (JET, Lang Chicago, Illinois)mixingB. N/Atest(InstronIBBOND/Stick:Note: (glass fibers non- preimpregnated, preimpregnated, preimpregnated, POLYDENTIA• Chicago, Illinois)England)C. 62.2/77.1/73.8/151.1Metrovice (Polydentia SA, prepolymers, benzoyl preimpregnated, preimpregnated, preimpregnated, preimpregnated, premovice• CH-6805 peroxide, pigments, titanium dioxide: Liter• Here itanium dioxide: Liter• Here mixing• Here test• Here test• Here testMetrovice (Diversion)• Here titanium dioxide: Liter• Here titanium dioxide: Liter• Here test• Here test• Here test• Here test• Here testMetrovice (Diversion)• Here test• Here	Psarri et al.	Evaluation the	• In vitro	Α.	PMMA, 2-Hydroxyethyl	A/B/C: Se	elf-	Α.	N/A		3-point bending	Control/Polydentia/
different(A, B, C)Dimethyl-p-Toluidine (JET, reinforced withC. 2.5/ 91-4467; Instron Co, Buckinghamshire,A. 71.4/97/100.5/174.1MPamethods of fiberreinforced withLangDental116Buckinghamshire,B. 34.9/44.8/58.1/75reinforcementfiber: STICK (StickManufacturingCo.,England)C. 62.2/77.1/73.8/151.1(glass fibersTechLtd),Chicago, Illinois)Hethods of preimpregnated,POLYDENTIAB.P: ethyl methacrylateA. 1.64/1.85/2.05/3.17GPaglass fibers non-(Polydentia SA, preimpregnated,prepolymers, benzoylperoxide, pigments,England,C. 1.66/2.21/1.93/3.01Marzovicotitaniumdioxide:LitLitLitLitLit	(2020)	effect of three	Control groups		Methacrylate, N, N-	mixing		В.	N/A		test (Instron	IBBOND/Stick:
methods of fiber reinforcement (glass fibers preimpregnated, preimpregnated, preimpregnated, preimpregnated, CH-6805Lang Dental Manufacturing Co., Chicago,Illinois)116Buckinghamshire, England)B. 34.9/44.8/58.1/75 C. 62.2/77.1/73.8/151.1Manufacturing Chicago,Illinois)Chicago,Illinois)England)C. 62.2/77.1/73.8/151.1POLYDENTIA preimpregnated, preimpregnated, CH-6805B. P: ethyl methacrylate prepolymers, benzoyl peroxide, pigments, titanium diovide: Liter116Buckinghamshire, England)B. 34.9/44.8/58.1/75 C. 62.2/77.1/73.8/151.1MarzovicoPOLYDENTIA prepolymers, benzoyl prepolymers, benzoyl prepolymers, benzoyl premoted, DETAILB. P: ethyl methacrylate prepolymers, benzoyl prepolymers, benzoyl prejonymers, benzoyl prejonymers, benzoyl premoted, DETAILB. 0.78/1.06/1.16/1.55 C. 1.66/2.21/1.93/3.01		different	(A, B, C)		Dimethyl-p-Toluidine (JET,			C.	2.5/	91-	4467; Instron Co,	A. 71.4/97/100.5/174.1MPa
reinforcement (glass fibers preimpregnated, glass fibers non- preimpregnated, preimpregnated, CH-6805Manufacturing Co., Chicago, Illinois)England)C. 62.2/77.1/73.8/151.1Non- preimpregnated, prepolymers, benzoyl preimpregnated, prevoide, pigments, titanium diovide: LiterB. P: ethyl methacrylate prepolymers, benzoyl preimpregnated, prepolymers, benzoyl prevoide, pigments, titanium diovide: LiterEngland)C. 62.2/77.1/73.8/151.1		methods of fiber	reinforced with		Lang Dental				116		Buckinghamshire,	B. 34.9/44.8/58.1/75
(glass fibersTechLtd),Chicago, Illinois)preimpregnated,POLYDENTIAB.P: ethyl methacrylateglass fibers non-(Polydentia SA,prepolymers, benzoylpreimpregnated,CH-6805peroxide, pigments,Mazzowicotitanium dioxide: Lite		reinforcement	fiber: STICK (Stick		Manufacturing Co.,						England)	C. 62.2/77.1/73.8/151.1
preimpregnated, glass fibers non- preimpregnated,POLYDENTIAB.P: ethyl methacrylateA.1.64/1.85/2.05/3.17GPapreimpregnated, preimpregnated,(Polydentia SA, peroxide,prepolymers, benzoylB.0.78/1.06/1.16/1.55CH-6805peroxide, pigments,pigments, dioxide:C.1.66/2.21/1.93/3.01		(glass fibers	Tech Ltd),		Chicago, Illinois)							
glass fibers non- preimpregnated,(Polydentia SA, prepolymers,prepolymers, pigments,benzoylB.0.78/1.06/1.16/1.55Deroxide, titaniumpigments, dioxide:C.1.66/2.21/1.93/3.01C.		preimpregnated,	POLYDENTIA	В.	P: ethyl methacrylate							A. 1.64/1.85/2.05/3.17GPa
preimpregnated, CH-6805 peroxide, pigments, C. 1.66/2.21/1.93/3.01		glass fibers non-	(Polydentia SA,		prepolymers, benzoyl							B. 0.78/1.06/1.16/1.55
Mezzovico titanium dioxide: L		preimpregnated,	CH-6805		peroxide, pigments,							C. 1.66/2.21/1.93/3.01
			Mezzovico,		titanium dioxide; L:							

and polyethylene		Switzerland) and		isobutyl methacrylate, di-		
fibers)		RIBBOND (Inc.,		butyl phthalate, dimethyl-		
		Seattle,		p-toluidine (TRIM, H.J.		
		Washington)		Bosworth Co., Skokie,		
	•	Stored in distilled		Illinois)		
		water at 37ºC for	C.	Bis-GMA, dimethacrylate		
		24 hours		polymer, zirconium		
				particles, silica and silane,		
				pigments (Protemp, Espe-		
				Premier, Norristown,		
				Pennsylvania)		

4. DISCUSSION

The present integrative review reported the major results of relevant previous studies considering the strength of different resin-based materials manufactured by traditional chairside and CAD-CAM for interim prostheses. The degree of conversion, porosity and thickness affect the strength of resin-based materials. Also, the type of resin-matrix materials and manufactured method are determinant. Thus, the findings validate the hypothesis of this study.

4.1. Materials for interim prostheses

Two major groups of materials for interim dental prostheses are commercially to fabricate temporary restorations, namely: methyl methacrylate (MMA) and bis-acryl materials, as seen in Table 1. Traditional MMA-based molecules have a low molecular weight, and linear organic chain which in turn exhibit low strength. (1,3,5,22) Methyl methacrylate polymerizes by an addition pathway through the carbon-carbon double bonds to form polymethyl methacrylate (PMMA). Regardless of the intended application, PMMA is often commercially available in powder/liquid system. The powder component contains PMMA, benzoyl peroxide initiator, a plasticizer (dibutyl phthalate), opacifiers (titanium and zinc oxides), fibers, and pigments or dyes. (14,17,29,30) The liquid component often contains MMA monomer, ethylene glycol dimethacrylate as a cross-linking agent, and hydroquinone as an inhibitor. (17) However, bis-acrylic matrix has multifunctional monomers such as Bis-GMA or TEGDMA, resulting in a cross-linked polymer having a enhanced strength (14–16,29,30) Bis-acryl composite materials reveal advantages when compared to PMMA considering a low polymerization shrinkage, low exothermic reaction, higher wear resistance, and proper overall mechanical properties. Nonetheless, the costs can be the main disadvantage. (13) On the traditional chairside technique, the elastic modulus of PMMA has been recorded at around 0.78 to 8 GPa while the bis-acryl materials reveal an elastic modulus at around 1.66 to 9 GPa. (4,6,27)

The 3-point bending strength of PMMA is recorded at around 40 to 102 MPa that is lower than the strength recorded for the bis-acryl materials at 62 to 126 MPa. (1,6,7,10,13,22–24,28)

Resin-matrix composites reveal proper mechanical properties when compared to PMMA. The chemical composition of resin-matrix composites varies according to the manufacturers, as described in Table 1. The organic matrix often involves different monomers such as bisfenol A-glycidyl methacrilato (Bis-GMA), trietileno glicol dimethactilato (TEGDMA), Urethane Dimethacrylate (UDMA), bisphenol A diglycidyl methacrylate ethoxylated (Bis-EMA), and photo initiators (i.e., canforquinone). The inorganic content can reach up to 90wt% fillers in the chemical composition of resinmatrix composites. Inorganic fillers can include one or two types of silanized ceramic or glass-ceramic particles such as colloidal silica, zirconia, zirconium silicate, barium silicate, or ytterbium fluoride. (15,16,29) Those fillers increase the strength and elastic modulus and reduce polymerization shrinkage, the coefficient of thermal expansion, and water absorption of the composite material. (16,31) Composite materials can be also reinforced with fibers such as carbon, polyethylene, glass-ceramics, or ceramics. The balance in the percentage of the organic matrix and inorganic fillers determine the physicochemical properties of the resin-matrix composites. (15,16) The mean values of elastic modulus, hardness, flexural strength, and wear resistance recoded for resinmatrix composites are quite higher when compared to the mechanical properties of PPMA or bis-acryl materials.

The manufacturing of prosthetic using by the CAD-CAM process guarantee the physicochemical properties of the materials taking into consideration the high clinical success rate. The major benefits of the CAD-CAM technique include the decrease in the defect incorporation (i.e., pores and cracks) in the material bulk in comparison with the chairside powder/liquid technique. (2,7,10-12,18,22,24) Nowadays, several based materials are commercially available in CAD-CAM blocks. CAD-CAM blocks composed of

PMMA reveals a 3-point bending flexural strength at 90 MPa, Vickery's hardness at 20 HV, and fracture toughness at 2.53 MPa m⁻¹. The CAD-CAM blocks composed of resin-

matrix composite, with 61 to 70wt% filler content, have elastic modulus at around 9 to 15 GPa, Vickers hardness between 65 and 97 HV and 3-point bending strength at around 150 to 220 MPa and flexural strength between. (18) The interim PMMA prostheses manufactured by CAD-CAM is a highly polymerized polymer within a well-controlled environment regarding pressure and atmosphere. Highly crosslinked polymer promotes prostheses with enhanced mechanical properties that can minimize mechanical failures and release of monomers, as illustrated in **Figure 2**. (1,2,7,9,10,12,18) Therefore, the water absorption of the polymers manufactured by CAD-CAM is significantly decreased when compared to the chairside powder/liquid mixture technique. PMMA manufactured by CAD-CAM showed the highest values of fracture maximum loading in the selected studies (**Table 1**). (1,2,5,7,9–11,18,19,22–24,26,32) In this way, CAD-CAM becomes the first-choice technique for maintenance of the long-term clinical success of interim restorations.

4.2. Strength of the interim dental prostheses

The mechanical properties of interim dental prostheses play a key role on the provisional oral rehabilitation considering the chewing forces and related fatigue process. Experimental testing are recommended for novel materials and different design mimicking clinical conditions, as illustrated in **Figure 3**. (14,17) Results from different type of strength testing were discussed in this review since several factors could be assessed on design, materials and testing set up. The typical flexural testing are performed on specimens of materials by 3- or 4-point bending set up. However, some studies also performed an evaluation of the flexural behavior of prostheses by compressive loading on multi-unit prostheses supported by tooth or implants.

The force produced by human occlusal loading has the following values: 40N on swallowing; 170 to 881N on chewing nuts; 39 to 788N for corresponding chewing loads; 200 to 500N for the posterior regions; and 200-300 N for anterior regions. (3,19)

Materials for interim prostheses must be able to withstand that loading magnitude. (1,2,5,7,19,23,24)

A previous study evaluated the flexural strength of different methacrylate-based polymers materials manufactured by CAD-CAM. The findings validate the hypothesis that the methacrylate-based materials produced by CAD-CAM (31-34 MPa) revealed the highest strength values when compared to the materials (~16 MPa) manufactured by chairside powder/liquid technique. (1) The analysis of the results was associated to the lack of polymerization, water absorption, residual stresses, and presence of defects such as pores and cracks. Thus, the efficiency of the polymerization and compaction of the material previously to the CAD-CAM procedure is responsible for the decrease in defects and the enhanced polymerization. Another study corroborated such findings on the enhanced properties of materials manufactured by CAD-CAM. The flexural strength of PMMA manufactured by CAD-CAM revealed the highest mean values (106-131 MPa) when compared to a bis-acryl composite (85 MPa) and PMMA manufactured by chairside powder/liquid mixture (66 MPa). (23) Regarding those strength values, interim prostheses must be manufactured by CAD-CAM method on clinical situations over long periods up to the final prosthetic placement. (10)

The mechanical properties of interim restorations can be enhanced with fibers or particle-like fillers. A high content and a submicron-scale size of the fillers improve flexural strength of the resin-matrix composites (1,2,5,6,9,10,19,28). Interim prostheses reinforced with fibers have demonstrated a higher fracture loading values than those recorded for restorations free of fibers. (6,11,26) A previous study compared the fracture loading values of interim prostheses fabricated from Telio CAD or chairside powder/liquid technique with different materials reinforced with glass fibers. Materials

reinforced with glass fiber revealed increased fracture loading values. Interim prostheses reinforced with glass fibers revealed maximum values of fracture loading of around 471 ±62.4 N while Telio CAD showed maximum values of fracture loading of around 531.1 ±150.1 N. (11) Another previous study evaluated the mechanical effects of three different fiber reinforcement methods: Ribbond polyethylene fibers, Polydentia

non-impregnated glass fibers and stick pre-impregnated glass fibers). The 3-point bending of three provisional reinforced materials showed higher values (by 20 to 50%) when compared to non-reinforced ones. (6)

Regarding the oral environment, the mechanical testing can be performed after degradation (aging) or cyclic loading (fatigue) simulation assays. Thus, the flexural strength of provisional materials may be influenced by saliva, common dietary, acidic beverages, and interactions among such factors (28). The rate of mastication has been estimated at 5 to 8 mm/s (300-480 mm/min) in the posterior region of the mouth, although mandibular movements rapidly decelerate when teeth are in contact. The actual loading rate can therefore not be easily deduced from the chewing rate or muscle movements, which typically record cycle times. The optimal physiological loading rate for in vitro testing is therefore still unclear although that is likely higher than 0.5 Stresses from mechanical and thermal oscillations as well corrosive mm/min. substances can negatively affect the mechanical properties of prostheses. (2,28) On the retrieved studies, it has been well reported that thermocycling affects the mechanical properties of interim materials. (2,7) A previous study performed thermal cycling (5000 cycles) on stored specimens in water bath at 37ºC. They showed that PMMA-based provisional CAD-CAM prostheses (Telio CAD) had higher flexural strength before (124 MPa) and after thermal cycling (95.35MPa) when compared to the prostheses manufactured by chairside techniques. However, the strength decreased significantly after thermal cycling for all materials. Prostheses manufactured from bis-acryl composites were recommended for long-term provisional treatments. (7) Another study assessed the synergistic effects of both thermocycling process (5,000 cycles at 5-55°C) and occlusal fatigue loading (100,000 cycles of 100N at 4Hz). PMMA-based materials

manufactured by chairside powder/liquid showed lower strength values when compared to bis-acrylic and materials manufactured by CAD-CAM.(2)

Regarding the stress distribution, a previous study reported the region of prosthetic connectors concentrated higher stress magnitude regardless the restorative material. (18) However, the elastic modulus magnitude determines the stress

distribution since materials with a high stiffness are recommended for the prosthetic frameworks. A previous study identified fracture regions at the connector or abutment, whereas lower strength materials tended toward connector or mixed fractures. (19) *Coelho et al.* reported that the highest von Mises stress values were recorded on the occlusal surface and at the connector, between the prosthetic teeth. (12) Also, the presence of a cantilever negatively affected the strength of the test materials, although the prostheses manufactured by CAD-CAM still revealed the highest fracture loading values (1634-2649 N). (12)

5. CONCLUSION

The present integrative review reported findings on the strength of different resin-matrix prostheses and materials manufactured by CAD-CAM or traditional chairside methods. Within the limitations of the selected studies, the following conclusions can be drawn:

- Different resin-matrix prostheses and materials manufactured by CAD-CAM showed the highest strength values when compared to the materials manufactured by traditional chairside powder/liquid mixture methods;
- The highest strength values revealed by resin-matrix materials manufactured by CAD-CAM occurred due the low porosity rate and high degree of polymerization of the materials. The polymerization method used for materials manufactured by traditional chairside powder/liquid mixture provides a low degree of polymerization, that leads to the release of monomers and defects. Those defects are spots for stress concentrations that can negatively affect the strength of the prostheses;
- Future mechanical testing should be performed in association with physicochemical methods to determine the degree of conversion of the resin-matrix prostheses and materials. Also, the percentage of pores and other defects should be carefully evaluated to clarify its effects on the mechanical properties of the materials. Computational simulation by using finite element method could be useful for the prediction of stress distribution and fracture regarding different design and materials.

ATTACHMENTS

Figure 2. Schematic representation of PMMA material manufactured by CAD-CAM.

Figure 3. Images illustrating the mechanical tests used for testing flexural strength. **A**- Samples placed in universal testing machine (*Dureja et al.*); **B**- Four-unit prosthesis attached to fixed nickel-chromium. B₁- Conventional, B₂- Cantilever (*Coelho et al.*); **C**- Test design for fracture load measurement in a universal test machine (*Reymus et al.*); **D**- Specimen mounted on universal testing assembly for the compressive load test (*Reeponmaha et al.*)

computer-aided design materials. C, Manufactured from Vita CAD material.

BIBLIOGRAPHY

- Çakmak G, Yilmaz H, Aydoğ Ö, Yilmaz B. Flexural strength of CAD-CAM and conventional interim resin materials with a surface sealant. J Prosthet Dent. 2020 Dec 1;124(6):800.e1-800.e7.
- Reeponmaha T, Angwaravong O, Angwarawong T. Comparison of fracture strength after thermo-mechanical aging between provisional crowns made with CAD/CAM and conventional method. J Adv Prosthodont. 2020 Aug 1 [cited 2021 Apr 25];12(4):218–24.
- Abdullah AO, Tsitrou EA, Pollington S. Comparative in vitro evaluation of CAD/CAM vs conventional provisional crowns. J Appl Oral Sci. 2016 May 1;24(3):258–63.
- Schwantz JK, Oliveira-Ogliari A, Meereis CT, Leal FB, Ogliari FA, Moraes RR. Characterization of bis-acryl composite resins for provisional restorations. Braz Dent J. 2017 Aug 2;28(3):354–61.
- Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD/CAM with those fabricated manually. J Prosthet Dent. 2015 Sep 1;114(3):414–9.
- Psarri C, Kourtis S. Effect of fiber-reinforcement on the strength of polymer materials for provisional restorations: An in vitro study. J Esthet Restor Dent. 2020;32(4):433–40.
- Yao J, Li J, Wang Y, Huang H. Comparison of the flexural strength and marginal accuracy of traditional and CAD/CAM interim materials before and after thermal cycling. J Prosthet Dent. 2014;112(3):649–57.
- 8. Singh A, Garg S. Comparative Evaluation of Flexural Strength of Provisional Crown and Bridge Materials-An Invitro Study. J Clin Diagn Res. 2016 Aug 1; 10(8):ZC72-

- 9. Karaokutan I, Sayin G, Kara O. In vitro study of fracture strength of provisional crown materials. J Adv Prosthodont. 2015; 7(1):27–31.
- Digholkar S, Madhav VN V, Palaskar J. Evaluation of the flexural strength and microhardness of provisional crown and bridge materials fabricated by different methods. J Indian Prosthodont Soc. 2016 Oct 1; 16(4):328–34.
- Peñate L, Basilio J, Roig M, Mercadé M. Comparative study of interim materials for direct fixed dental prostheses and their fabrication with CAD/CAM technique. J Prosthet Dent. 2015 Aug 1;114(2):248–53.
- Coelho C, Calamote C, Pinto AC, Esteves JL, Ramos A, Escuin T, et al. Comparison of CAD-CAM and traditional chairside processing of 4-unit interim prostheses with and without cantilevers: Mechanics, fracture behavior, and finite element analysis. J Prosthet Dent. 2021 Jan 15;
- Mehrpour H, Farjood E, Giti R, Barfi Ghasrdashti A, Heidari H. Evaluation of the Flexural Strength of Interim Restorative Materials in Fixed Prosthodontics. J Dent (Shiraz, Iran). 2016 Sep;17(3):201–6.
- Peutzfeldt A. Resin composites in dentistry: the monomer systems. European Journal of Oral Sciences. 1997; 105: 97–116.
- Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic Fillers for Dental Resin Composites: Present and Future. ACS Biomaterials Science and Engineering. 2016 Dec 1; Vol.2 p. 1–11.
- Kumar SR, Patnaik A, Bhat IK, Singh T. Optimum selection of nano- and microsized filler for the best combination of physical, mechanical, and wear properties of dental composites. Proc Inst Mech Eng Part L J Mater Des Appl. 2018 May 1;232(5):416–28.
- Zafar MS. Prosthodontic applications of polymethyl methacrylate (PMMA): An update [Internet]. Vol. 12, Polymers. MDPI AG; 2020 [cited 2021 Jun 18]. p. 1–35. Available from: https://pubmed.ncbi.nlm.nih.gov/33049984/

- Campaner LM, Silveira MPM, de Andrade GS, Borges ALS, Bottino MA, Dal Piva AM de O, et al. Influence of Polymeric Restorative Materials on the Stress Distribution in Posterior Fixed Partial Dentures: 3D Finite Element Analysis. Polymers (Basel). 2021 Feb 28;13(5):1–11.
- Bauer R, Zacher J, Strasser T, Rosentritt M. In vitro performance and fracture resistance of interim conventional or CAD-CAM implant-supported screw- or cement-retained anterior fixed partial dentures. J Prosthet Dent. 2020 Sep 19;
- Karaman T, Eser B, Altintas E, Atala MH. Evaluation of the effects of finish line type and width on the fracture strength of provisional crowns. Odontology. 2021 Jan 1;109(1):76–81.
- Rosentritt M, Raab P, Hahnel S, Stöckle M, Preis V. In-vitro performance of CAD/CAM-fabricated implant-supported temporary crowns. Clin Oral Investig. 2017 Nov 1;21(8):2581–7.
- 22. Dureja I, Yadav B, Malhotra P, Dabas N, Bhargava A, Pahwa R. A comparative evaluation of vertical marginal fit of provisional crowns fabricated by computeraided design/computer-aided manufacturing technique and direct (intraoral technique) and flexural strength of the materials: An in vitro study. J Indian Prosthodont Soc. 2018 Oct 1;18(4):314–20.
- Alp G, Sema M, Burak Y. Comparison of Flexural Strength of Different CAD/CAM
 PMMA-Based Polymers PubMed. J Prosthodont. 2019 Fev;28(2): e491-e495.
- Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L. Characterization of the mechanical properties of CAD/CAM polymers for interim fixed restorations. Dent Mater J. 2020 Mar 27;39(2):319–25.
- 25. Reymus M, Fabritius R, Keßler A, Hickel R, Edelhoff D, Stawarczyk B. Fracture load of 3D-printed fixed dental prostheses compared with milled and conventionally fabricated ones: the impact of resin material, build direction, post-curing, and artificial aging—an in vitro study. Clin Oral Investig. 2020 Feb 1;24(2):701–10.
- 26. Gopichander N, Halini Kumarai K V., Vasanthakumar M. Effect of polyester fiber

reinforcement on the mechanical properties of interim fixed partial dentures. Saudi Dent J. 2015;27(4):194–200.

- 27. Lee J, Clark SR, Tantbirojn D, Korioth TVP, Hill AE, Versluis A. Strength and stiffness of interim materials and interim fixed dental prostheses when tested at different loading rates. J Prosthet Dent. 2020 Nov 17.
- Kadiyala KK, Badisa MK, Anne G, Anche SC, Chiramana S, Muvva SB, et al. Evaluation of flexural strength of thermocycled interim resin materials used in prosthetic rehabilitation- An in-vitro study. J Clin Diagnostic Res. 2016 Sep 1;10(9):ZC91–5.
- 29. Ferracane JL. Resin composite State of the art. Academy of Dental Materials.2011. Vol 27: p. 29–38.
- Jandt KD, Sigusch BW. Future perspectives of resin-based dental materials. Dent Mater. 2009 Aug;25(8):1001–6.
- 31. Chen MH. Critical reviews in oral biology & medicine: Update on dental

