

Distribution of inorganic graft material within the PRF block: A integrative review

Diana de Assunção Pereira Ferreira

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Gandra, 29 de setembro 2021

Diana de Assunção Pereira Ferreira

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Distribution of inorganic graft material within the PRF block: A integrative review

Trabalho realizado sob a Orientação do Prof. Doutor Júlio Souza e Co-orientador do Doutor Nuno Sampaio

Declaração de Integridade

Eu, Diana de Assunção Pereira Ferreira, declaro ter atuado com absoluta integridade na elaboração deste trabalho, confirmo que em todo o trabalho conducente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.

DEDICATÓRIA

E assim passaram 4 anos!

Tenho um enorme orgulho em ser enfermeira e essa minha paixão não será esquecida, ela irá sim, complementar esta minha nova paixão pela Medicina dentária. Fazer este percurso foi muito difícil, entre trabalhar por turnos no hospital com horários malucos, e ainda cumprir com todas as tarefas inerentes de todas as unidades curriculares, fez-me muitas vezes pensar "no que me fui meter" ... Coragem, Persistência e Determinação são as minhas palavras de ordem, se não fossem elas eu não estaria a redigir este texto em forma de conclusão de um longo ciclo.

Por esse mesmo motivo e primeiramente, dedico a mim mesma a conclusão desta etapa e do quão orgulhosa em mim estou por chegar até aqui.

Ao meu amado filho Pedro, que acompanhou parte deste percurso ainda dentro mim e agora com um aninho vê a mãe alcançar mais uma vitória. Desculpa meu filho, por todo o tempo que não pude partilhar contigo para continuar esta missão, não foi fácil, depois do teu nascimento pensei algumas vezes em desistir por seres tão pequenino, mas a força de vontade foi maior e foi a pensar também no teu futuro que resisti, e no final de cada dia, sentir os teus bracinhos ao redor do meu pescoço, o teu olhar, o teu sorriso, compensavam sempre eram e são o melhor presente do mundo, por muito cansada ou cheia de problemas que esteja, tudo passa quando te tenho no meu colo!

Ao meu amado esposo Miguel, estávamos casados à pouco mais de um ano quando comecei este percurso, obrigada pelo teu incentivo, e pela conduta exemplar que me passaste como Médico Dentista, és o exemplo de que com dedicação e trabalho árduo chegamos onde sonhamos.

Aos meus familiares, em mais destaque à minha querida Mãe, teria sido realmente impossível sem a sua ajuda, cuidou e cuida sempre do meu menino e principalmente cuida de todos nós com o carinho e afeto de uma grande Mulher, muito obrigada!

Aos meus amigos, que são como família e que para o bem e para o mal, estão sempre comigo, muito obrigada.

À minha binómia Sion e à minha trinómia Cleopatra, foi um privilégio conhecer-vos e ter-vos sempre comigo ao longo desta caminhada, levo comigo as melhores recordações graças a vocês, estarão sempre no meu coração.

Aos meus orientadores, Professor Doutor Júlio Souza e o Professor Nuno Sampaio, pelo acompanhamento e guia na direção da elaboração deste trabalho, o meu muito obrigada pela vossa dedicação aos alunos e no encorajamento na busca científica.

RESUMO

O objetivo principal deste estudo, foi realizar uma revisão integrativa sobre a distribuição das partículas do biomaterial de enxerto após mistura com plasma rico em plaquetas (PRF). As seguintes palavras-chave foram aplicadas: (platelet rich fibrin) OR (PRF); AND (block) OR (bone graft); AND (CBCT) OR (micro-CT) OR (microscopy), entre Fevereiro e Maio de 2021. Os critérios de inclusão envolveram, ensaios clínicos randomizados controlados, estudos pré-clínicos randomizados, estudos prospetivos, relatos de caso, um estudo de caso - coorte única, um estudo comparativo e um estudo em animais. Análises obtidas por micro-CT revelaram uma homogeneidade na distribuição de partículas no bloco de L-PRF e revelou um volume médio de 37,7% ± 1,7% para as partículas de DBBM no bloco de L-PRF. A distância média entre as partículas DBBM foi de aproximadamente 60.55 µm (0.0605 mm) na imagem A, e de 226.3 µm (0.23 mm) na imagem B, que foi visualizada nas imagens de SEM (microscopia eletrónica de varredura).

Este estudo é inconclusivo, são necessárias medições e avaliações em meio laboratorial através de microscopia eletrónica, uma vez que as imagens onde se realizaram estas avaliações são insuficientes para validar a veracidade e representatividade destas medidas.

Palavras-chave: platelet rich fibrin, PRF, block, bone graft, CBCT, micro-CT, microscopy.

ABSTRACT

The main aim of this study was to perform an integrative review on the distribution of inorganic graft material particles within the platelet rich fibrin (PRF) block. The following keywords were applied: (platelet rich fibrin) OR (PRF); AND (block) OR (bone graft); AND (CBCT) OR (micro-CT) OR (microscopy), between February and May 2021. Inclusion criteria involved randomized controlled clinical trials, randomized preclinical studies, prospective studies, case reports, a case study - single cohort, a comparative study and a animal study. Micro-CT analyses revealed that the particles were homogenously distributed within the L-PRF block, without contact with each other and revealed a mean volume of $37.7\% \pm 1.7\%$ for the DBBM particles in the L-PRF block. However, no measurement was performed torecord. The distance between the DBBM particles was approximately 60.55 µm (0.0605 mm) in image A, and 226.3 µm (0.23 mm) in image B, which was visualized in the images by SEM (Scanning electron microscopy).

This study is inconclusive, measurements and evaluations in the laboratory through electron microscopy are necessary, since the images where these evaluations were carried out are insufficient to validate the veracity of these measurements.

Keywords: platelet rich fibrin, PRF, block, bone graft, CBCT, micro-CT, microscopy

INDEX

Abreviaturas	ix
1.Introduction	9
2.Objective and hypothesis	10
3.Method	11
4.Results	13
5.Discussion	33
6.Conclusion	
References	

FIGURE INDEX

Figure - 1 Flow diagram of the search strategy used in this study	13
Figure - 2 Image A: L-PRF block surface "cells embedded in the fibrin network"	B: LPRF
block cross-section "fibres of the liquid fibrinogen connecting the dbbm particles i	nside the
block	31
Figure - 3 L-PRF block protocol: protocol:	34

TABLE INDEX

Table 1- Relevant data gathered from the retrieved studies	13
Table 2 -Distance between DBBM particles in Image	31
Table 3- Distance between DBBM particles in Image B	32
Table 4- Size measurement of DBBM particles in Image	32

Abreviaturas

- A-PRF Advanced platelet-rich-fibrin
- β -TCP β tricalcium phosphate
- BIC Bone-implant contact
- CBCT Cone-beam computed tomography
- CM Collagen membrane
- DBBM Deproteinized bovine bone mineral
- DFDBA Demineralized freeze-dried bone allograft
- ELISA Enzyme-linked immunosorbent assay
- GBR Guided bone regeneration
- HA Histomorphometric analysis
- IGF Insulin-like growth factor
- i-PRF Injectable platelet rich fibrin
- ISQ Implant stability quotient
- L-PRF Leukocyte and platelet rich fibrin
- Micro-CT Micro Computed Tomography
- OD Optical density (OD)
- OFD Open flap debridement
- PGDF Platelet derived growth factor
- PPP Platelet poor plasma
- PRF Platelet rich fibrin
- PRP Platelet rich plasma
- qRT-PRC Quantitative reverse transcription-polymerase chain reaction
- RPM Revolutions per minute
- SEM Scanning electron microscopy
- TGF- β Beta transforming growth factor
- VEGF Vascular endothelial growth factor

1.Introduction

Various graft materials are used to reconstruct bone defects in the jaws due to tooth loss, trauma, advanced periodontal diseases¹, periapical lesions that require periradicular surgery², pathological lesions, and congenital disorders like clefts of the lip, alveolus, and palate³, that negatively affects the prognosis of dental implants⁴, once they need to of adequate bone volume and quality for achieving your osseointegration⁵.

To deal with the limitations described above, researchers have explored various bone augmentation strategies and materials, such as harvesting autogenous bone⁶, that is the only one that has osteogenic, osteoinductive and osteoconductive qualities, while other materials possess only osteoconductive properties⁷, for this is considered the gold standard for grafting, although it has limitations⁸, such as donor site morbidity, obtaining limited amounts, high rates of resorption³, disease transmission and immunogenic response⁹. Because of these disadvantages, other bone graft materials such as allografts, xenografts, and alloplastic bone grafts^{3,6} are frequently used for bone augmentation.

Deproteinized bovine bone mineral (DBBM) appeared as one of the most popular employed xenografts, with successful outcomes in histological and clinical perspectives⁹. As stated earlier, the DBBM only has the capacity for osteoconduction but no osteoinduction and osteogenesis, cannot activate new bone regeneration by itself, however is considered as the gold standard xenograft for guided bone regeneration (GBR)¹⁰, however is an material chemically and physically similar to human bone, that act as a scaffold allowing osteogenic cell transportation from the sinus wall to the graft particles increasing the potential of new bone formation¹¹.

Rather prolonged degradation rate DBBM, usually retards the replacement of new bone formation and prolongs the graft-healing time and fails to synchronize with the osteogenic rate⁹. Hence, combining the graft material with a biologic promoter that contains crucial growth factors may reduce the graft-healing time and enhance the osteoinductive process of bone remodeling^{4,9,11}.

Platelet rich-fibrin (PRF), an autologous fibrin matrix ^{1,10}, which belongs to the secondgeneration platelet concentrate, was first developed in France by Choukroun *et al.* ^{2,3,5,8,12}.

The natural fibrin clot in PRF seems to be responsible for the slow release of growth factors⁸, such as platelet derived growth factor (PGDF), vascular endothelial growth factor

(VEGF), insulin-like growth factor (IGF) and transforming growth factor (TGF- β)¹¹, for an extended period.

The injectable platelets rich-fibrin (i-PRF) is a liquid formulation obtained for injectable purpose and bears an extra benefit of aggregating into a fibrin clot shortly after injection. This bio-active material also have growth factors (PDGF, VEGF, TGF- β and so on), that play a vital role in cell migration, proliferation, and vascularization for tissue regeneration⁹.

Studies have described that, PRF accelerates early bone regeneration by angiogenesis, chemotaxis, mitosis, and stem cell proliferation in the early phase of bone regeneration^{1,9,10}. The combination offers several advantages including healing wound^{1,8,11}, improved bone maturation and growth, stable grafting, adequate wound sealing and hemostasis, and improved handling of the graft materials¹. Clinical studies have emphasized that combining growth factor rich PRF and bone grafts could enhance bone quality and quantity^{1,3,11}.

The Leukocyte and Platelet Rich-Fibrin Block (L-PRF block) has arisen from the combination of a xenograft that is acting as a scaffold with osteoinductive ability and L-PRF membranes that serve as a bioctive nodule with osteoinductive capacity¹⁰, due to its rapid angiogenesis, faster bone remodeling, cost-efficiency and tissue regeneration capacity, thus allowing earlier implant treatment⁹. The combination of activated platelets in the L-PRF membranes and the Liquid Fibrinogen results in a mass production of fibrin, integrating the bone substitute into a strong construct¹⁰.

2.Objective and hypothesis

The main aim of this study was to perform an integrative review on the distribution of inorganic graft material particles within the PRF block.

The distribution of the inorganic graft material within the PRF block is made homogeneously or heterogeneously in space?

3.Method

3.1. Information sources and search strategy

A bibliographic review was performed on PubMed (via National Library of Medicine) considering such database includes the major articles in the field of dentistry.

The following search terms were applied: (platelet rich fibrin) OR (PRF); AND (block) OR (bone graft); AND (CBCT) OR (micro-CT) OR (microscopy). Also, a hand-search was performed on the reference lists of all primary sources and eligible studies of this integrative review for additional relevant publications.

The inclusion criteria included articles published in the English language, until March 1, 2021, reporting surgical approaches using PRF mixed with inorganic graft material, in order to understand its distribution in the block and its influence on the success of bone augmentation. The eligibility inclusion criteria used for article searches also involved randomized controlled clinical trials, randomized preclinical studies, prospective studies, case reports, case study – single cohort, comparative study and an animal study.

Exclusion criteria were as follows: articles in Chinese and Russian; articles that evaluate the effect of PRF membranes and inorganic graft without being mixed in block, or that were mixed and used to fill the void between the bone graft block and the recipient site and on the graft surface.

Studies based on publication date were not restricted during the research process.

3.2. Study selection and data collection process

Studies were primarily scanned for relevance by title, and the abstracts of those non-excluded were assessed. The total of articles was compiled for each combination of key terms and therefore the duplicates were removed using Mendeley citation manager. The second step comprised the evaluation of the abstracts and non-excluded articles, according to the eligibility criteria on the abstract review. Selected articles were individually read and analyzed concerning the purpose of the present study.

At last, the eligible articles received a study nomenclature label, combining first author names and year of publication. The following variables were collected for this review:

authors' names and publication year, aims/ purpose, study design, PRF protocol, Inorganic graft material, and main outcomes.

4.Results

The literature search on PubMed identified a total of 87 articles although 36 duplicates were removed, as seen in Figure 1. Of the 51 articles, titles and abstracts were read seeking agreement with the inclusion criteria of the presente study and then 13 studies were discarded. After the full reading of the remaining 38 articles, 25 articles were excluded because the application of the PRF and the inorganic graft material were carried out independently, that is, without being mixed in block, and one article in which PRF and inorganic graft material were mixed and used to fill the void between the bone graft block and the recipient site and on the graft surface.

Figure - 1 Flow diagram of the search strategy used in this study

At last, 13 articles were included in the present integrative review. The results of the selection of articles are shown in Table 1.

Table 1- Relevant data gathered from the retrieved studies

Author	Purpose	Study design	PRF protocol	Inorganic	Main outcomes
(year)		/analyses		graft	
				material	
Pavani, M.P., Reddy K., Reddy B., <i>et al.</i> (2021)	Thisstudyassesses bone fillinin intrabonydefects,following the useofβtricalciumphosphate(TCP)bonebonegraftwithoutPRF.	A randomized clinical trial • CBCT	 6 ml intravenous blood was collected from the antecubital fossa of the patient The blood was centrifuged using a centrifuge at 3000 rpm for 10 min. The PRF clot/gel located in the middle of the tube soaked in acellular plasma was removed with tweezers and used as graft material at the experimental site. 	β-TCP (SYBOGRA F-T)	Thirty intraosseous defects were treated with: 1. OFD + β TCP + PRF; 2. β TCP alone 3. OFD alone. • All three treatment groups showed a significant reduction in probing poket depth (PD) at 6 months: \circ OFD + β TCP + PRF group 1.8 ± 0.26mm; \circ β TCP group 2.15 ± 0.63 mm; \circ OFD group 2.3 ± 0.48 mm. • Intergroup comparison of plaque index, gingival index and sulcus bleeding index between treatment groups showed no significant difference at different time periods. • The percentage of bone filling: \circ β TCP group 33.22%, \circ OFD group 21.52%.

					• The mean bone filling and the percentage of
					bone filling were higher in the β TCP + PRF
					group than in the eta TCP and OFD Group.
Al-Mahdi,	The aim of this	А	• 40 ml venous blood sample was	Bone graft	• 1 month after surgery the mean of bone
A. H.;	prospective	prospective	collected from each PRF group	from the	density of bone grafts:
Abdulcab	study is to	study	patients.	iliac crest.	 PRF group (224.25 HU)
man M	investigate and		• Drawn into 4 sterile 10ml evacuated		 Control group (249.5HU),
	evaluate the		glass tubes without an		• 6 months after surgery the mean of bone
Jumpily	quality and	• CBCT	anticoagulant.		density of bone grafts:
линану,	quantity of the		• The blood was centrifuged		 PRF group (411.37HU)
(2021)	bone graft that		immediately using a Gemmy		 Control group (410 HU).
(2021)	mixed with PRF		tabletop centrifuge (plc-5 Gummy		(The bone density was measured and collected in
	when used in		Europe) for 10 min at 3000 rpm		same labeled layer 1 month and 6 months after
	reconstruction of		(approximately 1220 g).		surgery using CBCT density scale that measured
	alveolar cleft in		After centrifuge, it settles into the		by HU unit that used in CT.)
	terms of bone		following layers:		• The bone loss in the width and beight
	density and		Pod lower fraction containing red		• The bone loss in the width and height
	resorption rate of		blood colls		according to axial and coronal views in the
	the bone graft.				group was significantly lower than that in the
			Opper straw colored cellular plasma		
			which is platelet poor plasma		
			Middle fraction containing the fibrin		
			clot (PRF).		

			The upper straw colored layer is then removed and middle PRF is collected.		
Yüceer- Çetiner, E.; Özkan, N.; Önger, M. E. (2021)	The aim of this study is to analyze the effects of autogenous dentin graft and mixture of autogenous dentin graft and platelet-rich fibrin (PRF) applied to the tooth extraction sockets on bone healing process.	A randomized controlled clinical study • Histopat hological Evaluati on • Immuno histoche mical Evaluati on • Scannin g Electron Microsco py (SEM)	 10 ml venous blood was obtained in a glass-coated plastic sterile tube (Hema & Lab Medical Products, Ankara, Turkey) without anticoagulant from each patient for the Group DP. The tubes were centrifuged (EBA 20; Hettich Zentaifugen, Tuttlingen, Germany) at 3000 rpm (approximately 867g) for 10min immediately. After centrifugation, the blood was separated into 3 different layers: acellular plasma at the top, erythrocytes at the bottom, PRF in the middle. The PRF clot was removed using a sterile collet. With a sterile scissors, it was divided into small pieces and mixed with the dentin graft. 	Dentin graft	 Were evaluated in this study, a total of 57 extraction sockets in 9 patients who were planned to be treated with dental implant after tooth extraction: Extraction sockets were divided randomly into 3 groups for each patient: 1° group: sockets were filled with autogenous dentin graft (Group D). 2° group: sockets were filled with the mixture of PRF and autogenous dentin graft (Group DP). 3° group: sockets were left empty as the control group (Group C). After 3 months, histological and immunohistochemical evaluations were performed on the samples taken during the implant surgery. Additionally, samples obtained from each group were examined by scanning electron microscopy. It has been concluded that undemineralized autogenous dentin

					graft has bone formation capacity on
					early period of bone healing. It can be
					used as bone graft material in
					augmentation procedures and its
					combined use with PRF accelerates
					new bone formation.
Dhamija,	This in vivo study	Randomised	• 5 ml of whole venous blood was	Deminerali	The study comprised thirty sockets(having 15
R., Shetty	compared	controlled	collected from each patient at the	zed freeze-	control and 15 test sockets) from patients varying
V.,	clinical,	trial.	time of implant placement, in sterile	dried bone	from 25 to 60 years old:
Vineeth	histological, and		vacutainer tubes of 6-ml capacity	allograft	
K., <i>et al.</i>	radiological		without anticoagulant.	(DFDBA)	 Group I: Control group - no graft was placed
(2020)	differences in	• CBCT	The vacutainer tubes were then placed		and the extraction socket was left to heal
	bone formation	 Histologi 	in a centrifugal machine REMI R-4C		normally
	in human	cal	(REMI Laboratory Instruments, Mumbai,		 Group II: Test group - alveolus was preserved
	extraction	evaluati	India) at 3000 rpm (approximately		with DFDBA mixed with PRF and placed after
	sockets grafted	ON	1602g) for 10 min at room temperature		extraction.
	with	 Histomo 	after which it settled into the following		• Lower buccal bone levels were seen in the
	demineralized	rphologi	layers:		control group versus test group at all
	freeze-dried	cal	- Red lower fraction containing red		intervals though moderately significant.
	bone allograft	Evaluati	lead colls		• Lingual bone levels significantly reduced at
	(DFDBA) and	ON	Lippor straw, colored collular plasma		all the three intervals for the control group as
	platelet-rich		The middle fraction contributes the		compared to the test group.
	fibrin (PRF), with		fibric det		• Better bone conversion was noted in the
	nongrafted				preserved sockets.

	sockets and		The upper straw-colored layer was		• The preserved sockets also showed better BIC
	bone–implant		removed, and the middle fraction which		3 months after implant placement and
	contact (BIC) at 3		is the PRF was collected.		loading.
	and 6 months after implant placement.				 In both groups, ridge width reduced in a time span of 6–7 months but did not show any significant difference between the groups.
					 In the histological and radiological evaluation, showed insignificant difference in both groups. Indigenously developed DFDBA material shows promising results as an osteoinductive material.
Mu, Z.; He	This study aims	A	The development of the low-speed	Deproteini	Characterization of DBBM and iPRF+DBBM:
Q.; Xin L.; <i>et al.</i> (2020)	to assess the angiogenic and osteogenic capacity in rabbit sinus model grafted with Deproteinized bovine bone mineral (DBBM) particles soaked	randomized preclinical study. • SEM • Enzyme- linked immuno sorbent	 centrifugation concept promoted the creation of a new formulation of platelet-rich fibrin (PRF), namely iPRF: 1 ml upper layer of transparent pale-yellow sticky liquid in the test tube was collected as iPRF. 	zed bovine bone mineral(DB BM): (Bio- Oss, Geistlich Pharma AG, Wolhusen,	SEM (Stereomicroscope and scanning electron microscop) images showed that DBBM particles are scattered and irregular with porosity. However, after loaded with iPRF, DBBM particles were aggregated and the pores were filled with iPRF, becoming a fibrin clot as a whole. Leukocytes can be observed on the fibrin network of iPRF.

in iniectable		assav	Switzerlan	•	Compared to DBBM group, iPRF+DBBM group
Platelet rich		(ELISA)	d)		showed faster hope formation during the
fibrin (iPRF), both	•	Quantita	-,		early bealing period (at 2nd week) while
of which		tive			there is no significant difference between
interacted to		reverse			two groups in the late period (at 7th week)
form		transcrin			Compared to the DBRM group iPRE+DBRM
integrated block		tion-			aroun showed that new hone formation was
integrated block.		nolymer			mostly detected in the lower part of the SM
		aso			(Schneiderian membrane) and the upper part
		chain			of the basal hone. This may be due to the
		reaction			elevated migration of esteenrogenitor cells
					The ratio of new hope formation in
				•	iPPE DRPM aroun was 13 times higher than
		Micco-			that of the DRPM aroun at (weeks
	•				chat of the DBBM group at 4 weeks
	•	FIUOIESC		•	Quantitative reverse transcription-
		ence			polymerase chain reaction (qRI-PCR) and
		assay			vascular tube formation assay were
		and Vu			conducted to verify the angiogenic property
		staining			of IPRF+DBBM in the neovascularization, and
	•	Histologi			results showed that the mRNA levels of VEGF,
		cal			Col-1 and Ang-1 were significantly higher in
		evaluati			the iPRF+DBBM group compared with the
		ON			DBBM group.

		• Immuno			iPRF+DBBM accelerated vascular formation, bone
		fluoresc			remodeling and substitution of bone graft
		ence			materials at the early healing period, even though
		evaluati			it failed to increase the bone volume in a long-
		on			term period.
		• Histomo			This integrated grafting biomaterial will have
		rphomet			areat notential in the annication of sinus
		ric			augmentation which provides a favorable
		evaluati			environment for early implant placement.
		ON			
Kavitha	This article	Case Report	• Intravenous blood was collected in a	Beta-	Two cases are presented where periapical
М.,	describes cases	• CBCT	10 ml sterile tube without	tricalcium	surgery was performed and the bone defect was
Krishnave	of bone		anticoagulant.	phosphate	filled with PRP + β -TCP and PRF + β -TCP to
ni R.,	augmentation		• Immediately centrifuged (Remi -	(β-ΤϹΡ)	promote bone regeneration and healing was
Swathi	with a		India) at 3000 rpm (approximately	(Sybograf-	evaluated quantitatively using CBCT.
A.M., et al	combination of		1602g) for 10 minutes to obtain PRF	T Eucare	According to table 1 presented in the case
(2020)	PRP + β -TCP and		gel.	Pharmaceu	report.
	PRF + β -TCP for			ticals (P)	o In nre-operative: hone density is
	treatment of the			Ltda.).	higher in case 2
	chronic				\circ At the end of 6 months there is an
	periapical lesion.				insignificant bone density difference
	The cases were				in favor of case 1 (PRP + β -TCP),
	followed for 6				

Contro A.	months and 1 year and healing was evaluated quantitatively using cone beam computed tomography.	la vitra studu		Depertoisi	At the end of 1 year this difference inverts in favor of case 2 (PRF + β -TCP).
Castro A.; Cortellini S.; Temmer man A.; <i>et al.</i> (2019)	The aim of this study was to characterize the L-PRF block and its components (L-PRF membrane, L- PRF exudate and Liquid Fibrinogen) in terms of release of growth factors, cellular content, and their distribution	 <i>In vitro</i> study ELISA Micro-CT SEM 	 2 glass-coated plastic tubes of 9ml (red cap, BVBCTP-2, Intra-Spain, Intra-lock, Florida, USA) 1 plastic tube without coating of 9ml (white cap, WCT, Intra-Spain, Intra-lock, Florida, USA) Centrifuged at 408g force (IntraSpin, Intra-Lock, Florida, USA). The centrifugation was interrupted after 3 min and the white cap tube was removed from the centrifuge. The remaining red cap tubes were further centrifuged for 9 min, completing the cycle of 12 min of centrifugation. 	Deproteini zed bovine bone mineral (DBBM): (Bio-Oss, Geistlich Biomateria Is, Wolhusen, Switzerlan d)	 The L-PRF block consists of deproteinized bovine bone mineral particles surrounded by platelets and leukocytes, embedded in a fibrin network that releases growth factors up to 14 days, with TGF-β1 being the most released growth factor, followed by PDGF-AB, VEGF and BMP-1. The L-PRF membrane and liquid fibrinogen showed a high concentration of leukocytes and platelets and the microCT and SEM images revealed the bone substitute particles surrounded by platelets and leukocytes, embedded in a fibrin network.

	inside the L-PRF		• Immdiatly after removing the white		
	block.		cap tube from the centrifuge, the		
			yellow liquid obtained above the		
			red blood cells was collected whith		
			a sterile (5ml) syringe: liquid is		
			called Liquid Fibrinogen.		
			• When the full centrifugation (12		
			min) was finalized, the red cap		
			tubes werw removed and two L-		
			PRF membranes were prepared.		
Pichotan	This case report	Case report	• Peripheral blood sample was taken	Deproteini	• CBCT evaluation showed an increased bone
o E.C.;	aimed to		before the surgery, and immediately	zed bovine	resorption in the sinus filled with L-PRF and
Molon	describe the		centrifuged at 3000 RPM	bone	DBBM compared to the left sinus (22.52%
R.S.;	effects of	• CBCT	(approximately 1038g) for 10min	mineral	and 8.95% respectively).
Paula	leukocyte and	 Histologi 	using an appropriate centrifuge	(DBBM)	• Implant stability quotient (ISQ) were higher
L.G.F.; <i>et</i>	platelet-rich	cal	(Kasvi K14-0815, Curitiba — Brazil).	(Bio-Oss;	than 68% for all implants tested in all the
<i>al</i> (2018)	fibrin (L- PRF)	evaluati	• After centrifugation, the fibrin clot	Geistlich	time points.
	associated with	ON	was removed from the tube and	Pharma	• Histomorphometric analysis showed higher
	deproteinized	 Histomo 	separated.	AG,	proportion of newly formed bone in the sinus
	bovine bone	rphomet	• The L-PRF clot was prepared in the	88	filled with L-PRF compared to the
	mineral (DBBM)	ric	form of a membrane by pressing out	Wolhusen.	contralateral side (2118102 and 975535
	and absorbable	evaluati	the fluids.	Switzerlan	mm3).
	collagen	ON		d)	• The addition of L-PRF allowed fast healing
	membrane (CM)			,	process evidenced by the higher amount of

	on bone				neoformed bone and less fibrous tissue in the
	regeneration in				sinus, compared to the group without L-PRF.
	maxillary sinus				• After 4 months, osseointegration of dental
	augmentation.				implants installed in the right sinus was
					successfully achieved.
					• 6 months after functional loading, stable
					bone levels were accomplished with the
					employed protocols.
Cortellini	This proof-of-	Case study	Before starting the surgery, 8 to 16	Deproteini	• Ten patients (mean age of 50,7 years)
S.; Castro	concept study	– Single	tubes (9 ml) of venous blood were	zed bovine	representing 15 sites with horizontal alveolar
A. B.;	was to	cohort.	collected from the patients:	bone	deficiencies were included.
Temmer	investigate the		• 6 to 1/ tubes (red can glass coating	mineral	• Superimpositio of pre-operative and post-
man A. <i>et</i>	effects of a new		(BVBCTP-2) IntraSpin Intra-Lock	(DBBM)	healing CBCT scans showed an average linear
<i>al</i> . (2018)	guided bone	• CBCT	Elorida (ISA)	(Bio-Oss	horizontal bone gain of 4,6 mm (±2,3), 5,3
	regeneration	 Micro- 	Centrifuge (IntraSpin Intra-Lock	Small	mm (±1,2) and 4,4 mm (±2,3), measured at 2,
	technique with a	СТ	Florida LISA) at 2700 rpm / 408g RCF for	particles,	6 and 10 mm from the alveolar crest,
	tissue		12 min_centrifune rotor radius 5 cm	Geistlich	respectively.
	engineering			AG,	• The volumetric gain was 1,05 cm3 (±0,7) on
	approach.		• 2 tubes (white cap, plastic coating	Wolhusen,	average. The resorption rate after 5-8
			(WCT, IntraSpin, Intra-Lock, Florida,	Switzerlan	months was 15,6 $\%$ (±6,7) on average.
			USA))	d)	• L-PRF block may be a suitable technique to
					augment deficient alveolar ridges.

			 Centrifuge (IntraSpin, Intra-Lock, Florida, USA) at 2700rpm/408g RCF for 3 min. The yellow fluid (Liquid Fibrinogen) at the top of the white cap tubes was aspirated with a sterile syringe, without the red part. After full centrifugation of the red cap tubes, the L-PRF clots were removed from the tubes using surgical tweezers. The clots were thereafter gently compressed into membranes using a sterile metal box (Xpression, Intra- Lock, Florida, USA). 		
Chenchev I.L.; Ivanova V.V.; Neychev D.Z.; <i>et al.</i> (2017)	The aim of this case report was to assess the possibility for augmentation of the alveolar ridge in the frontal region of the	Case report CBCT 	 A-PRF: After the venipuncture with a 10 ml vacuum test-tube (Advanced-PRF), 9 ml of blood was taken from the patient. The blood was then immediately put into a PRF DUO (Process for PRF-France) 	Bone graft material (do not specify in the article	 The control CBCT scan showed good organization of new bone allowing placement of a dental implant. The good clinical results in this case report show that the addition of PRF and i-PRF to

	upper jaw, utilizing a combination of bone graft material, injectable platelet-rich- fibrin (i-PRF) and advanced platelet-rich- fibrin (A-PRF).		 centrifuge for 8min at 1300 rpm (approximately 719g). The A-PRF membrane, in our methodology, was formed out of two A-PRF clots by putting them on top of one another - the areas bordering with the red part were put at the opposite ends and it was then dried in a metal box - A-PRF Box. i-PRF: Blood was drawn from the patients in special tubes. The manipulation was performed immediately before using the i-PRF. The tubes were then placed in a centrifugal machine at a 700 rpm (approximately 209g) for 3 min. 		•	bone graft materials improves their properties. Mixing of bone graft material with pieces of PRF and its infiltration with i-PRF leads to delivery of growth factors inside the wound, which helps the migration of osteopromotor cells and attracts circulating stem cells to the wound (fast angiogenesis). Adding PRF to the bone graft reduces the required bone graft material volume and improves its manipulative qualities. The use of PRF accelerates the healing of hard and soft tissues, and the use of PRF membrane instead of another barrier membrane reduces the cost of the procedure.
Moussa M.; El- Dahab O. A.; Nahass	Characterize clinically and radiographically the effect of using platelet-	A controlled trial study.CBCT	 In the test group: 10 ml of blood per missing tooth space was collected after the local anesthesia administration, and centrifuged (Centrifuge 800, China) 	Buccopalat al Bone	•	In the 14 sites (7 test group and 7 control group) in 12 patients (7 women and 5 men), all but one autograft (from the control group) integrated successfully after 4 months.

H. E.	rich fibrin (PRF)		at 3500 rpm (approximately 1372g)		No statistically significant difference was
(2016)	autologous graft		for 12 to 15 min.		found between demographic data in the two
	on the				groups.
	augmentation				• There was a statistically significant increase
	results of				in the buccopalatal bone width in both
	autogenous				groups by time as measured by CBCT as well
	palatal bone				as the manual caliper.
	blocks.				The test group showed statistically
					significantly lower mean graft resorption
					than the control group (test, 0.8 \pm 0.6 mm;
					control, 1.6 ± 0.9 mm).
					Autogenous palatal bone block surface
					resorption is significantly decreased by the
					use of PRF coverage.
Yoon J-S.;	The purpose of	Animal	3ml blood sample was collected	Bio-oss	In each rabbit, 2 circular bone defects,
Lee S-H.;	this study was to	study	from each rabbit and drawn into	(Geistlich-	one on either side of the midline, were
Yoon H-J.	investigate the		10ml test tubes without an	Pharma,W	prepared using a reamer drill.
(2014)	influence of		anticoagulant.	olhusen,	\circ Each of the experimental sites
	platelet-rich	 Histologi 	• The blood was centrifuged	Switzerlan	received bovine bone with PRF,
	fibrin (PRF) on	cal	immediately using a tabletop	d)	\circ Each of the control sites received
	angiogenesis and	evaluati	centrifuge (406 G, GYROGEN,		bovine bone alone.
	osteogenesis in	ON	Daejeon, Republic of Korea) for		At all experimental time points,
	guided bone	 Immuno 	10 min at 3000 rpm		immunostaining intensity for VEGF was
	regeneration	histoche	(approximately 400 g).		consistently higher in the experimental

	(GBR) using	mical			group than in the control group. However,
	xenogenic bone	evaluati			the differences between the control
	in rabbit cranial	ON			group and the experimental group were
	defects.	• Histomo			not statistically significant in the
		rphomet			histomorphometrical and immu-
		ric			nohistochemical examinations.
		evaluati			• The results of this study suggest that PRF
		ON			may increase the number of marrow cells.
					However, PRF along with xenogenic bone
					substitutes does not show a significant
					effect on bony regeneration.
					• Further large-scale studies are needed to
					confirm our results
Pripatna	This study	Comparative	• 8ml of autologous whole blood	Calvarial	• The mean optical density (OD) and
nont, P.,	investigated the	study	collected from the central ear	bone chips	histomorphometric analysis (HA) of the
Nuntanar	effect of		artery of the rabbit before	and	percentage of new bone showed that the
anont T.;	platelet-rich		sedation.	Deproteini	PRF groups were significantly higher than
Vongvatc	fibrin (PRF) on	 SEM 	Blood samples were treated according	zed bovine	the non-PRF groups in the autogenous
haranon	bone	• Radiogra	to the PRF protocol (Dohan et al.,	bone (DBB)	bone graft and the empty defect, but not
S.; <i>et al</i> .	regeneration of	phy	2006a):		in the DBB group and the composite
(2013)	various grafting	 Histolog 	• The whole blood without as		group.
	materials in	ycal	The whole blood without an apticopoulapt was trapsforred		PRF had a positive effect on bone
		analyses	into a 10 ml glass tube and		formation when used alone or combined

rabbit	calvarial	•	Histomo	centrifuged at 3000 rpm	with autogenous bone, but not with
defects.			rphomet	(approximately 1509g) for 10	deproteinized bovine bone.
			ric	min (Labofuge 400R centrifuge,	
			analysis	Hereus, Hanau, Germany).	
				A fibrin clot in the middle of the tube	
				was used as an adjunct to grafting	
				material.	

The main conclusions of the studies are:

- Only one author¹⁰, evaluated the properties of the L-PRF block and its components in terms of release of growth factors, cell content and structure, the remaining 12 authors (92,31%), intend to evaluate angiogenesis and osteogenesis in bone regeneration using the PRF Block with inorganic graft material.
- Study projects include: 3 randomized controlled clinical studys^{3,8,13}, 1 prospective study¹, 1 randomized preclinical study⁹, 1 controlled trial study⁶, 3 cases report^{2,7,11}, 1 case study-single cohort⁴ and 1 comparative study¹².

Two authors did not indicate the type of study design in their articles, but after carrying out their readings, Castro, A. *et al.*, refer to na *in vitro* study¹⁰, and Yoon, J.S., *et al.*, refer animal studies⁵.

- According to the articles studied, these were the types of exams performed: Cone-beam computed tomography (CBCT) (61,54%), Histological evaluation (38,46%), Scanning electron microscopy (SEM) (30,77%), Micro Computed Tomography (Micro-CT) and Histomorphometric evaluation (23,08%), Enzyme-linked immunosorbent assay (ELISA) and Immunohistochemical evaluation (15,38%), Histopatological evaluation, Histomorphological evaluation, Flerescence / Immunoflurescence evaluation and Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) (7,69%).
- Mu, Z. *et al.*, is the only author who does not specify the type of protocol used in the centrifugation of the blood collected for PRF preparation, only mentions the centrifugation time, of 15 min, and removed 1ml of i-PRF⁹.
- Regarding blood collections for the PRF preparation protocol, both the quantity and the location of collection differ among authors, and there are also authors who do not mention them.
- As for the centrifugation protocol, the vast majority of authors (61,54%) performed centrifugation with a force of 3,000 RPM in 10 min^{1,2,3,5,8,11,12,13}. Castro, A. *et al.*, and Cortellini, S. *et al.*, (15,38%) applied the same centrifugation protocol, using the same centrifuge (IntraSpin, Intra-Lock, Florida, USA) with a force of 408G/2700RPM in 12 minutes^{4,10}. Chenchev, I.L., *et al.* performed a protocol for A-PRF (advanced platelet-rich fibrin) by performing a centrifugation at a force of 1300 RPM (approximately 719 G) in 8 minutes and for i-PRF a centrifugation at a force 700 RPM (approximately 209 G) in 3 minutes⁷. Moussa, M. *et al.*, used a centrifugation protocol using a force of 3500 RPM (approximately 1372 G) for 12 to 15 minutes⁶. A conversion of RPM to G force was performed for all types of centrifuges used, and different values were noted for all.

- The most widely used type of PRF is L-PRF (84,62%) (leukocyte and platelet rich fibrin) (REFERENCES), Mu, Z., *et al.*, and Chenchev, I.L., *et al.*, used i-PRF (15,38%) (injectable PRF)^{7,9}, this last author also used the A-PRF (advanced PRF)⁷.
- As for the type of inorganic graft, most used DBBM (46,15%) (demineralized bovine bone mineral), namely BIO-OSS[®] 4.5,9,10,11,12</sup>, Pavani, M.P. *et al.* and Kavitha, M., *et al.* used β-TCP (beta-tricalcium phosphate) (15,38%), namely Sybograft-T[®] 2.8. In the remaining studies (38,46%), bone graft from the iliac crest¹, dentin graft³, DFDBA (demineralized freeze-dried bone allograft)¹³, bucopalatal bone⁶ and calvarial bone¹² fragments were used. Chenchev, I.L. *et al.*, was the only one who did not refer to the type of inorganic graft

material, however they state that Bone graft material was used⁷.

- Most authors claim that the inorganic graft material with PRF induces greater bone regeneration, bone neoformation and osseointegration 1,2,3,4,6,7,8,9,10,11,12,13, and one author states that PRF can increase the number of marrow cells, however, together with xenogenic bone substitutes, they have no significant effect on bone regeneration⁵.
- Micro-CT analysis revealed that the particles were homogenously distributed within the L-PRF block, without being in close contact with each other. The SEM images from the surface of the L-PRF block showed a dense fibrin mesh covering the whole surface of the block and numerous cells were embedded in this mesh, which seemed to keep the components of the bloock assembled. In the cross-sectional images bundles of fibres could be seen connecting different DBBM particles and these bundles contained clusters of platelets, leukocytes and some red blood cells¹⁰, the images also showed that DBBM particles are scattered and irregular with porosity, however, after loaded with iPRF, DBBM particles were aggregated and the pores were filled, becoming a fibrin clot, as a whole⁹.In order to perform some measurements of the distances between DBBM particles, SEM images that presented a measurement scale were selected. The selected images are by the author Castro A., et al. (2018). Figure 2.

Figure - 2 Image A: L-PRF block surface "cells embedded in the fibrin network" B: LPRF block cross-section "fibres of the liquid fibrinogen connecting the dbbm particles inside the block

Table 2 -Distance between DBBM particles in Image

Distance between DBBM particles	Average distance between particles evaluated in
	21 sites.
0	60,55µm ≈ 0,061 mm
0	
0	
0,67 µm	
1 µm	
1,33 µm	
. 1,33 μm	
1,33 µm	
1,67 µm	
1,67 µm	
2,67 µm	
3 µm	
3,67 µm	
4 µm	
4 µm	
5 µm	
6 µm	
6 µm	
7,67 μm	
8,33 µm	

Table 3- Distance between DBBM particles in Image B

Distance between DBBM particles	Average distance between particles evaluated in 9
	sites.
0	226,3 µm ≈ 0,23mm
0	
67 µm	
130 µm	
250 µm	
270 µm	
320 µm	
330 µm]
670 μm]

Table 4- Size measurement of DBBM particles in Image

Size measurement of 10 evaluated particles	Average particle size
4 µm	5,15 µm ≈ 0,0052mm
4,2 μm	
4,5 μm	
4,5 μm	
5 µm	
5,3 µm	
5,3 µm	
5,3 μm	
6,7 µm	
6,7 µm	

- On the sample surface (IMAGE A), DBBM particles have a shorter distance average than in the cross section sample (Image B) (0.0605mm <0.23mm) (Table 2 and 3), this difference may be due to greater amplitude of the B image, making the DBBM particles not appear, giving a false feeling of "empty", so the distance between the particles in reality must be smaller than the one measured in the B image.
- Regarding the size of the particles, we have an average diameter of 5.15 μm (0.0052 mm), which is not consistent with what the author Castro A. et al. states that the diameters of mineral particles vary between 65-85 μm (0.065 0.085mm)¹⁰, this is due to the fact that DBBM particles vary in size, and may be due to some measurement error (Table4).

5.Discussion

Only one author, evaluated the properties of the L-PRF block and its components in terms of release of growth factors, cell content and structure, and in this evaluation only Micro-CT analysis revealed that the particles were homogenously distributed within the L-PRF block, without being in close contact with each other, but no measurement was performed that could describe the distance between the DBBM particles and the L-PRF. This author also described SEM images from the surface of the L-PRF block showed a dense fibrin mesh covering the whole surface of the block and numerous cells were embedded in this mesh, which seemed to keep the components of the block assembled, and in the cross-sectional images bundles of fibres could be seen connecting different DBBM particles and these bundles contained clusters of platelets, leukocytes and some red blood cells¹⁰ (Figure 2).

Most authors (84,62%) affirm that the use of the PRF Block decreases bone loss, increases bone density and neoformation, increases vascularization and improves healing. Pripatnanont, P.*et al.*, it further states that the PRF had a positive effect on bone formation when used alone or combined with autogenous bone, but not with deproteinized bovine bone¹².Yoon, J-S. *et al.*, says that the PRF may increase the number of marrow cells, however, along with xenogenic bone substitutes doot show a significant effect on bony regeneration⁵.

All authors cite choukroun's standard protocol, directly or indirectly through other authors who cite it. Choukroun *et al.* (2017), refere in your protocol, that 10 ml of blood was collected and centrifuged for 12 minutes at 2700 rpm (750 g). After centrifuge, it settles into the following layers: Red lower fraction containing red blood cells, upper straw colored cellular plasma which is platelet poor plasma (PPP) and in the middle fraction containing the fibrin clot (PRF). The PRF clot is removed using a sterile collet. The clots were thereafter gently compressed into membranes using a sterile metal box. With a sterile scissors, it's divided into small pieces and mixed in a 1:1 ratio with inorganic graft material (autologous bone/bone-substitute material)¹⁴ (Figure 3).

Figure - 3 L-PRF block protocol: protocol: 1) collect peripheral blood; 2) centrifuge; 3) Blood tube; 4) centrifugation: A) PPP; B) PRF; C) red blood cells; 5) PRF metal box; 6) Mixed PRF membrane whit DBBM; 7) Sticky bone

Micro-CT analyses revealed that the particles were homogenously distributed within the L-PRF block, without contact with each other and revealed a mean volume of 37.7% \pm 1.7% for the DBBM particles in the L-PRF block, however, no measurement was performed. After performing the measurements on the selected images, we can see that the distance between the DBBM particles was approximately 60.55 µm (0.0605 mm) in image A and 226.3 µm (0.23 mm) in image B, and relate this difference with the image magnification, since the elements can be "hidden" by the L-PRF that appears very magnified in image B. Despite this difference between the measurements in the two images, we can conclude that these values demonstrate the proximity between the DBBM particles, corroborating the assertion of the author Castro A. et al., that the particles were homogeneously distributed within the L-PRF block, without being in close contact with each other.

Castro A. et al. states that the diameters of mineral particles range between 65-85 μ m (0.065 - 0.085 mm)¹⁰, the measurement I made in image A, shows an average diameter of 5.15 μ m (0.0052 mm), which does not match what the author states, this difference may result from the fact that DBBM particles vary in size or may be due to some measurement error.

The evaluation and measurement of the distances performed on images A and B presented great difficulty in relation to the scale presented, the difficulty in distinguishing all the elements of the image, as well as the difficulty in feeling safe in relation to the measurements performed with a ruler and manually, there is always a margin of error that I consider high.

6.Conclusion

The distribution of the inorganic graft material within the L-PRF block is homogeneously or heterogeneously in space? We can conclude that the distribution is homogeneous since the distance between the particles is reduced, keeping the elements of the block together.

This study is inconclusive, measurements and evaluations in the laboratory through electron microscopy are necessary since the images where these evaluations were carried out are insufficient to validate the veracity of these measurements.

References

- Al-Mahdi, A. H., Abdulrahman, M. S. & Hadi Al-Jumaily, H. A. Evaluation the Effectiveness of Using Platelet Rich Fibrin (PRF) With Bone Graft in the Reconstruction of Alveolar Cleft, A Prospective Study. *J. Craniofac. Surg.* Publish Ah, 1–5 (2021).
- M Kavitha, R Krishnaveni, AM Swathi, M. A. Evaluation of Healing by Cone Beam Computed Tomography (CBCT) using Platelet-Rich Plasma (PRP) + β -Tricalcium Phosphate (β -TCP) and Platelet Rich Fibrin (PRF) + β -Tricalcium Phosphate (β -TCP) in Periapical Lesions: Case Report. *Niger. J. Clin. Pract.* 1026–1029 (2020) doi:10.4103/njcp.njcp.
- Yüceer-Çetiner, E., Özkan, N. & Önger, M. E. Effect of Autogenous Dentin Graft on New Bone Formation. J. Craniofac. Surg. Publish Ah, 1–7 (2021).
- 4. Cortellini, S. *et al.* Leucocyte- and platelet-rich fibrin block for bone augmentation procedure: A proof-of-concept study. *J. Clin. Periodontol.* **45**, 624–634 (2018).
- Yoon, J. S., Lee, S. H. & Yoon, H. J. The influence of platelet-rich fibrin on angiogenesis in guided bone regeneration using xenogenic bone substitutes: A study of rabbit cranial defects. *J. Cranio-Maxillofacial Surg.* 42, 1071–1077 (2014).
- Moussa, M., El-Dahab, O. & El Nahass, H. Anterior Maxilla Augmentation Using Palatal Bone Block with Platelet-Rich Fibrin: A Controlled Trial. *Int. J. Oral Maxillofac. Implants* 31, 708–715 (2016).
- Chenchev, I. L., Ivanova, V. V., Neychev, D. Z. & Cholakova, R. B. Application of Platelet-Rich Fibrin and Injectable Platelet-Rich Fibrin in Combination of Bone Substitute Material for Alveolar Ridge Augmentation - a Case Report. *Folia Med.* (*Plovdiv*). 59, 362–366 (2017).
- Mudambi Prakash Pavani, Konda Reddy Krishna Mohana Reddy, B. H. R. & Sunil Kumar Biraggari, C. Hema Chandra Babu, and V. C. Evaluation of platelet-rich fibrin and tricalcium phosphate bone graft in bone fill of intrabony defects using conebeam computed tomography: A randomized clinical trial. *J. indian Soc. Periodontol.* 25, 138–143 (2021).
- 9. Mu, Z. *et al.* Effects of injectable platelet rich fibrin on bone remodeling in combination with DBBM in maxillary sinus elevation: a randomized preclinical

study. Am. J. Transl. Res. 12, 7312-7325 (2020).

- Castro, A. *et al.* Characterization of the Leukocyte- and Platelet-Rich Fibrin Block: Release of Growth Factors, Cellular Content, and Structure. *Int. J. Oral Maxillofac. Implants* 34, 855–864 (2019).
- Pichotano, E. C. *et al.* Early placement of dental implants in maxillary sinus grafted with leukocyte and platelet-rich fibrin (L-PRF) and deproteinized bovine bone mineral. *J. Oral Implantol.* 41 (2018) doi:10.1563/aaid-joi-D-17-00220.
- Pripatnanont, P., Nuntanaranont, T., Vongvatcharanon, S. & Phurisat, K. The primacy of platelet-rich fibrin on bone regeneration of various grafts in rabbit's calvarial defects. *J. Cranio-Maxillofacial Surg.* 41, e191–e200 (2013).
- Ridhima Dhamija, Vibha Shetty, K. V. & , Rakesh Nagaraju, R. S. R. Socket preservation with demineralized freeze-dried bone allograft and platelet-rich fibrin for implant site development: A randomized controlled trial. *J. Indian Prosthodont. Soc.* 19, 304–311 (2020).
- 14. Miron, R. & Choukroun, J. *Platelet Rich Fibrin in Regenerative Dentistry*. (2017).