

The anti-caries vaccine

A systematic integrative review

Anatole Simon Alfred Hippolyte GRAZIANI

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Gandra, 07 de junho de 2022

Anatole Simon Alfred Hippolyte GRAZIANI

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

The anti-caries vaccine

A systematic integrative review

Trabalho realizado sob a Orientação da Professora Doutora Carla Maria Carvalho Batista Pinto

Declaração de Integridade

Eu, acima identificado, declaro ter atuado com absoluta integridade na elaboração deste trabalho, confirmo que em todo o trabalho conducente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele). Mais declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.

I am grateful to my parents and sisters for allowing me to study far from home, to always have good advice, to be as they are and all the love they gave me no matter what happened.

I want to thank all the boys from le donjon de Pascal such as Pierrot do atraso, Zakouille, Quentinou and JB. The Girlz: Manue la galette, Laulau, Pauline and Lou. And I couldn't forget Vincenzo, Geoffrey and Hugo. Thanks to all of them for the laugh we shared and the time we passed all together enjoying our best life, our student life, which ends here. Thanks to all my dear friends from Paris (Tanguy, Felix, Nils, Anna, Leygue and Antonin), who besides the thousands of km of distance managed to stay close to me.

Thanks to the turma 8/10.

Thanks to all the persons I met who believed in me and helped me in a way or another.

Thanks to Cespu for having offered me a chance to do the job I wanted, for their teaching and

RESUMO

Introdução: As cáries dentárias são uma doença multifatorial, que implica interações entre os fatores do hospedeiro e o biofilme. A OMS considera a cárie um grave problema de saúde nos países industrializados.

Objetivo: Discutir sobre as novas formas promissoras de construção de uma vacina anti-cárie, os alvos potenciais e as limitações que poderia ter.

Material e métodos: A pesquisa foi realizada no PubMed e Science direct. A pesquisa complementar foi realizada através das bibliografias de outras revisões sistemáticas e trabalhos de meta-análise. Toda a inclusão de estudos foi feita entre Janeiro e Maio de 2022.

Resultados: 29 artigos foram incluídos.

Discussão: As vacinas de ADN, mucosas e subunidades são alguns dos tipos de vacinas mais promissores. Novos adjuvantes, como a combinação de chitosano + Pam3CSK4 ou chitosano + MPL, proteína FliC, ou uma coadministração de CCL19 com CCL17, têm sido testados. Todos eles mostraram boas perspectivas para o futuro. Sistemas de distribuição como nanopartículas ou sprays intranasais tiveram bons resultados. O alvo da vacina que teve as melhores perspectivas de sucesso foi o *S. mutans*, cuja agregação pode ser impedida.

Conclusão: As cáries podem afetar qualquer pessoa em qualquer idade, causando dor e desconforto, diminuindo as interações sociais e a produtividade no trabalho. A cárie é um fator de desigualdade social: as classes sociais mais baixas são mais afetadas. Uma vacina anti-cárie poderia vir com muitas limitações, como o tempo necessário para a desenvolver, a resistência da população à vacinação, os custos a longo prazo, e a possibilidade de diminuir a carga de trabalho para a profissão de dentista.

Palavras-chave: vacina, imunização, cárie dentária, economia, *Streptococcus mutans*, vacina de ADN

ABSTRACT

Introduction: Dental caries is a multifactorial disease, which involves interaction between host factors and the biofilm. WHO considers caries a major health problem in most industrialized countries.

Objective: To discuss about the new promising ways of making an anti-caries vaccine, the potential targets, and the limitations it could have.

Material and methods: A search was performed in PubMed and Science direct databases. Complementary research was performed through the bibliographies of other systematic reviews and meta-analysis works. The whole inclusion of studies was done between January and May 2022.

Results: 29 articles were included.

Discussion: DNA, mucosal and subunit vaccines are some of the most promising types of vaccine. New adjuvants, like the combination of chitosan + Pam3CSK4 or chitosan + MPL, FliC protein, or a coadministration of CCL19 with CCL17, are being tested. All of them showed good perspectives for the future. Delivery systems like nanoparticles or intranasal sprays had good results. The vaccine's target that had the best prospects of success was *S. mutans*, whose aggregation could be prevented.

Conclusion: The caries can affect anyone at any age, causing pain and discomfort, decreasing social interaction and productivity at work. The caries is a factor of social inequality: lower social classes are more impacted. An anti-caries vaccine could come with many limitations, like the time needed to develop it, the adversity for vaccination among the population, the long-term costs, and the possibility of decreasing the workload for the dentistry profession.

Key words: vaccine, immunization, dental caries, economy, Streptococcus mutans, DNA vaccine

RESUMO	۷.
ABSTRACTv	ίi
FIGURE INDEX	xi
TABLE INDEX	xi
INDEX OF ABREVIATIONSxi	ii
1. INTRODUCTION	.1
2. OBJECTIVE	2
3. MATERIAL AND METHODS	3
4. RESULTS	4
5. DISCUSSION2	3
a. The caries2	3
i. Mechanisms2	3
ii. Microbiome2	4
iii. Prevention2	6
b. The vaccine2	6
i. The different types of vaccines2	7
ii. Adjuvants2	8
iii. Future vaccines2	8
c. The anti-caries vaccine2	9
i. Types of vaccines2	9
ii. The different adjuvants2	9
iii. The delivery systems	0
iv. The inhibition of biofilm formation or aggregation of <i>S. mutans</i>	0
v. The enhancement of immunogenicity3	0
vi. Other potential candidates	0
d. Global point of view	31
i. For which population?	31
ii. Economy	31
iii. Limitations3	2
6. CONCLUSION	3
7. BIBLIOGRAPHICAL REFERENCES	
ANNEX	7

FIGURE INDEX

TABLE INDEX

Table 1 : PICo	
Table 2: Articles	5
Table 3: Additional informations	

INDEX OF ABREVIATIONS

AgNPs: silver nanoparticles

NP: Nanoparticle

APC: antigen-presenting cell

DC: dendritic cell

DMBT1: Deleted in malignant brain tumors 1

ECC: Early childhood caries

ECGC: Epigallocatechin gallate phospholipid complex

e.g: for example

Fabs: antigen-binding fragments

GTF: glycosyltransferases

GTB: glucan-binding protein

l.e. that Is

LTCD4: T lymphocyte cluster of differentiation 4

MHC: major histocompatibility complex

miR-9: microRNA-9

MPL: monophosphoryl lipid

MS: mutans streptococci

S.: Streptococcus

S-ECC: Severe-early childhood caries

VLP: virus-like particles

WHO: World Health Organization

1. INTRODUCTION

Dental caries is a multifactorial disease, which involves interaction between host factors (tooth surface, acquired pellicle, saliva, diet sugar) and the biofilm. The acid produced by the bacteria of the biofilm will demineralize the enamel, then continue to the dentin to reach the pulp, causing pain and discomfort.(1) At the age of 6 weeks, the oral microbiome of babies is mainly streptococci and *Veillonella* species. Eruption of teeth, puberty and pregnancy, such as other environmental changes, will affect the oral microbiome, promoting fitness and survival (2).

From Jenner and his first vaccine on the XVIII century, vaccines are considered one of the greatest public health achievements. They are an antigenic preparation, which causes an active immune response to prevent or decrease a disease. There are two main types of vaccines: the live attenuated vaccine, which contains the weakened virus; and the non-live vaccine, which doesn't have any virus still alive in it. Today, new types of vaccines, such as the DNA vaccine, are currently studied (3,4).

Nowadays, dental caries is still a neglected topic. WHO considers it a major health problem in most industrialized countries, in which 60-90% of children and most adults are affected (1). From the ongoing Global Burden of Disease Study, it's affecting around 3.9 billion people worldwide, making it a high prevalent disease (1). Plus, untreated caries in permanent teeth is the most prevalent condition evaluated across all medical condition, with a global prevalence of 35% for all age combined with 2,4 billion people affected (1).

During the last 40 years, the anti-caries vaccine is being developed over a large number of clinical trials. If this is successful, it could totally revolution the modern dentistry.

The aim of this work is to provide an overview of the most recent studies about anti-caries vaccines and all that underlies it.

2. OBJECTIVE

To discuss about the new promising ways of the anti-caries vaccine, the potential targets, and the limitations it could have.

3. MATERIAL AND METHODS

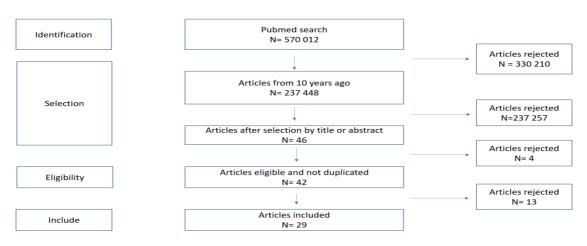
This work is an integrative systematic review.

The search was conducted on PubMed and Science Direct.

I used the words « vaccines » and « caries » as MeSH terms and, as key words, "economic", "DNA vaccine", "immunization", "*Streptococcus*", "dental caries", "dental disease", "fluoridation" and "prevention". I excluded some key words like "covid-19" to make the search more pertinent.

The criteria of inclusion were: the language (English and French); articles from 2012 to 2022; and articles that are clinical trial.

For exclusion criteria, I considered articles that came twice or more, articles published before 2012, and articles not related with the subject.


The selected articles were analyzed, and only the most relevant were used.

Although not included in the comparative table, some relevant review articles were cited to describe the state of the art.

Table 1 : PlCo

Population	Everyone
Interest	Vaccine
Context	New way of prevention

4. RESULTS

570 012 articles were found throughout the search, with the use of different key words. After the elimination of articles older than 10 years ago, I kept 237 448 articles. After the selection of title and abstract, I kept 46 articles. I then rejected the duplicated ones, to get to 42 articles. From them, I only selected the most relevant ones, which made a total number of 29 articles. The software Mendeley was used to organize the references.

Relation with the date of publication:

- 3 articles published in 2021
- 1 article published in 2020
- 4 articles published in 2019
- 2 articles published in 2018
- 4 articles published in 2017
- 6 articles published in 2016
- 1 article published in 2015
- 3 articles published in 2014
- 2 articles published in 2013
- 3 articles published in 2012

Table 2: Articles

Author and	Type of article	Name of the article	Objective	Result	Conclusion
date of					
publication					
Xu <i>et al.</i> -	Clinical trial	Fabrication of oral	To fabricate nanovesicles	The formulation exhibited a strong	EGCG-loaded nanovesicle in-situ gel
2021		nanovesicle in-situ	in-situ gel based on	antibacterial activity on <i>S. mutans</i> , which	holds great promise as an efficient
(5)		gel based on	Epigallocatechin gallate	could reduce acid production and tooth	anti-cariogenic formulation for topical
		Epigallocatechin	phospholipid complex	surface adhesion. In addition, EGCG	oral delivery.
		gallate phospholipid	(EGCG) in order to increase	formulation could inhibit the formation of	
		complex: Application	its stability and efficacy.	glucan and biofilm from <i>S. mutans</i> by	
		in dental anti-caries		suppressing the activity of	
				glycosyltransferase enzymes (GTF).	
Al-Ansari <i>et</i>	Clinical trial	Synthesis of silver	To investigate an	The smaller the size, the greater the	The potent antibiotic action over <i>S.</i>
<i>al.</i> - 2021		nanoparticles using	alternative antibacterial	antibacterial and antiviral potential the	<i>mutans</i> seen with the synthesized NPs,
(6)		gum Arabic:	solution from silver	particles exhibit. The biophysical	paves the way for the development of
		Evaluation of its	nanoparticles (AgNPs)	characteristics of AgNPs are the presence of	novel dental care products.
		inhibitory action on	against <i>S. mutans</i> .	phenols, alcohols, amides, sulfoxide,	
		Streptococcus		flavanoids, terpenoids and steroids. The	
		<i>mutans</i> causing		AgNPs exhibited a good antibacterial action	
				against the oral pathogen <i>S. mutans</i> . The	

		dental caries and		synthesized NPs at a dose level of 200g/mL	
		endocarditis		exhibited an inhibition zone with 18.30 \pm 0.5	
				nm diameter. The synthesised nanoparticles	
				inhibited the genes responsible for biofilm	
				formation of <i>S. mutans</i> over host tooth and	
				gums (gtfB, gtfC, gtfD) and virulent	
				protective factors (comDE, brpA and	
				smu360) and survival promoter genes (gyrA	
				and spaP, gbpB).	
Li <i>et al.</i> -	Longitudinal	Socio-Economic	To examines disparities in	28% of Chinese older adults have no	Dental care disparities in China may be
2021	study	Disparities in Dental	dental care and in the	remaining teeth and only 19% had used	reduced through increasing the
(7)		Health and Dental	costs of such care,	dental care in the past year. The uninsured	proportion of the population with
		Care Utilisation	according to insurance	and those with rural resident insurance had	insurance and expanding the range of
		Among Older Chinese	type and socio–economic	edentulousness rates of 31%, while the	dental treatments covered by all three
			status, among Chinese	edentulousness rate in those with urban	major insurance schemes.
			older adults.	employee insurance was 19%. About 13% of	
				the uninsured study respondents and 15% of	
				those with rural resident insurance had used	
				dental care compared with 30% of those	
				with urban employee insurance. Those in the	

				highest income and education groups and	
				those enrolled in a plan with a lower	
				coinsurance rate had a higher likelihood of	
				using dental care services and spending	
				more on dental care than did those in the	
				lowest socio–economic groups.	
Jia <i>et al.</i>	Randomized	Enhancing the	To enhance the	MiR-9 inhibited the expression of antigen	Attenuating the inhibition of
- 2020	clinical trial	immunogenicity of a	immunogenicity of a DNA	protein encoded by the anti-caries DNA	endogenous miR-9 enhanced the
(8)		DNA vaccine against	vaccine against <i>S. mutans</i>	vaccine. So, the expression of antigen protein	antigen expression and
		Streptococcus	by attenuating the	could be suppressed by microRNAs.	immunogenicity of the anti-caries DNA
		<i>mutans</i> by	inhibition of endogenous		vaccine.
		attenuating the	miR-9 (micro ARN-9).		
		inhibition of			
		endogenous miR-9			
Bai <i>et al.</i> -	Clinical trial	Construction of a	To construct a fusion anti-	The A region of pac gene of <i>S. mutans</i> and	Transgenic tomatoes may provide a
2019		fusion anti-caries	caries DNA vaccine in	mosaic plasmid of B subunit of cholera toxin	useful system to produce human
(9)		DNA vaccine in	transgenic tomato plants	were transferred to the tomato and their	caries antigen. The use of an oral plant
		transgenic tomato	for PAcA gene and cholera	integration in the tomato genome was	vaccine is a novel concept for creating
		plants for PAcA gene	toxin B subunit.	confirmed.	modern vaccines, which provides a
					platform for further research and
L	I				

		and cholera toxin B			development of preventive measures
		subunit			for caries.
Yang <i>et al.</i>	Clinical trial	Anti-caries vaccine	To test an anti-caries	A longer-term protection from colonization	The cold-adapted influenza viruses,
- 2019		based on clinical cold-	vaccine based on clinical	of <i>S. mutans</i> may be observed by	which have been used in clinics for
(10)		adapted influenza	cold-adapted influenza	immunization with this new anti-caries	more than 15 years, holds a great
		vaccine: A promising	vaccine.	vaccine if administered in early childhood.	potential for developing valid vaccines
		alternative for			against dental caries.
		scientific and public-			It should be an intranasal spray which
		health protection			is easy, painless, and does not require
		against dental caries			professional staff, making it more
					acceptable for people, especially
					children.
Liu <i>et al.</i> –	Clinical trial	FimH as a mucosal	To investigate whether	The mice immunized with the mixture of	Recombinant FimH-S.T could enhance
2019		adjuvant enhances	the recombinant FimH-S.T	FimH-S.T and PAc significantly enhanced the	specific IgA responses and protection
(11)		persistent antibody	protein could modulate	PAc-specific antibodies in the serum along	of anti-caries vaccine, possessing
		response and	immune response to anti-	with saliva and promoted splenocyte	mucosal adjuvant ability by activating
		protective efficacy of	caries vaccine <i>in vitro</i> and	proliferation. Pac + FimH-S.T decreased the	DC2.4 via TLR4 signaling pathway.
		the anti-caries	in vivo.	caries lesions formation, which provided high	
		vaccine		protective efficacy against dental caries.	

Bi <i>et al. –</i>	Clinical trial	The combinations	To investigate the effect	Compared with PAc alone, Pac + chitosan +	The combination of chitosan +
2019		chitosan-PAM3CSK4	of two adjuvant	Pam3CSK4 or Pac + chitosan + MPL	Pam3CSK4 or chitosan + MPL is
(12)		and chitosan-	combinations of chitosan	promoted significantly higher PAc- specific	promising for anti-caries vaccine
		monophosphoryl lipid	+ Pam3CSK4 and chitosan	antibody titers in serum and saliva, inhibited	development.
		A: Promising	+ monophosphoryl lipid	S. mutans colonization onto the tooth	
		immune-enhancing	(MPL) in the immune	surfaces and endowed better protection	
		adjuvants for	responses to the PAc	effect with significantly less caries activities.	
		anticaries vaccine PAc	protein <i>in vivo</i> and <i>in vitro</i> .	Chitosan + Pam3CSK4 and chitosan + MPL	
				showed no statistic differences.	
Alam <i>et al</i> .	Clinical trial	Synthetic antigen-	To test if synthetic	Fabs inhibited sucrose-induced S. mutans	S. mutans and S. sobrinus Fabs could
- 2018		binding fragments	antigen-binding	and <i>S. sobrinus</i> biofilm formation <i>in vitro</i> and	be used in passive immunization
(13)		(Fabs) against <i>S.</i>	fragments (Fabs) against	a combination of <i>S. mutans</i> and <i>S. sobrinus</i>	strategies to prevent dental caries.
		<i>mutans</i> and <i>S.</i>	S. mutans and S. sobrinus	Fabs prevented dental caries formation in a	This strategy may be applied towards
		<i>sobrinus</i> inhibit caries	inhibit caries formation.	rat caries mode.	a caries therapy, whereby Fabs are
		formation			topically applied to the tooth surface.
St. Michael	Clinical trial	Investigating the	To examine the vaccine	Development of an opsonophagocytic assay	Glycoconjugates of the rhamnan
<i>et al.</i> – 2018		candidacy of the	candidacy of the serotype	which illustrated the ability of the post-	polymers of <i>S. mutans</i> are a potential
(14)		serotype specific	specific polysaccharides	immune sera to facilitate opsonophagocytic	vaccine candidate to target dental
		rhamnan	elaborated by <i>S. mutans</i> .	killing of the homologous and heterologous	caries and other sequelae following
		polysaccharide based			
	I				

				and the second state of th	
		glycoconjugates to		serotypes at titers consistent with the	the escape of <i>S. mutans</i> from the oral
		prevent disease		structural homologies.	cavity.
		caused by the dental			
		pathogen			
		Streptococcus			
		mutans			
Batista <i>et al.</i>	Clinical trial	LT adjuvant	To evaluate the	Sublingual administration of P139-512 in	The sublingual administration of a P1-
- 2017		modulates epitope	immunogenicity,	combination with the mucosal adjuvant	based subunit vaccine represents a
(15)		specificity and	protective efficacy and	LTK4R (a derivative of heat-labile LT toxin)	promising approach for the prevention
		improves the efficacy	peptide-based immune	induced strong and long-lasting systemic	of dental caries caused by S. mutans.
		of murine antibodies	signatures of antibodies	and mucosal immune responses.	The role of adjuvants on the epitope
		elicited by sublingual	raised in mice after	Incorporation of the adjuvant resulted in an	specificity and functionality of
		vaccination with the	sublingual immunization	enhancement of the anti-adhesive and anti-	antibodies raised by subunit vaccines
		N-terminal domain of	with a recombinant form	colonization activity against <i>S. mutans</i> as	was disclosed.
		Streptococcus	of the P1(aka AgI/II, PAc)	evaluated both under in vitro and in vivo	
		<i>mutans</i> P1	adhesin (P139-512) of <i>S.</i>	conditions. Incorporation of the adjuvant to	
			mutans.	the vaccine formulation also changed the	
				epitope specificity of the induced antibodies	
				as determined by immunological signatures	
				of sera collected from vaccinated mice. The	

				use of a peptide microarray library led to the	
				identification of peptide targets recognized	
				by antibodies in serum samples with	
				enhanced anti-adhesive effects.	
Jiang <i>et al.</i>	Clinical trial	Enhanced immune	To determine if the CMV-	The dual-promoter formula in the	The effectiveness of a dual-promoter
- 2017		response to a dual-	nirB promoter immune	Salmonella-based DNA vaccine pCN-SS/SG	strategy in the anti-caries DNA vaccine
(16)		promoter anti-caries	regime was superior to	was successful in inducing a mucosal	when employing attenuated
		DNA vaccine orally	nirB promoter used alone	immune response against <i>S. mutans</i> . Such	<i>Salmonella</i> as delivering vehicle for
		delivered by	in inducing a protective	dual promoter system (CMV-nirB) showed a	mucosal immunization was verified.
		attenuated	immunity against <i>S.</i>	promising prospect for taking advantage of	
		Salmonella	<i>mutans</i> colonization.	mucosal immunization against dental caries	
		typhimurium		as well as against other related diseases.	
Esberg <i>et al.</i>	Clinical trial	Streptococcus	To investigate if adhesin	The presence of SpaP B and Cnm subtypes	This study emphasizes that careful
- 2017		<i>Mutans</i> Adhesin	types of <i>S. mutans</i> with	coincided with increased 5-year caries	sequence analysis and evaluation of <i>S</i> .
(17)		Biotypes that Match	sucrose-independent	increment, and their binding to DMBT1 and	<i>mutans</i> genotypes in concert with
		and Predict Individual	adhesion to host Deleted	saliva correlated with individual caries	dental caries incidence serves as a
		Caries Development	in malignant brain tumors	scores. The SpaP B subtypes are enriched in	useful example and model to better
			1 (DMBT1) (<i>i.e</i> . SpaP A, B or	amino acid substitutions that coincided with	understand strain variation and
			C) and collagen (<i>i.e</i> . Cnm,	caries and binding and specify biotypes of <i>S</i> .	disease association in relation to
			Cbm) match and predict	<i>mutans</i> with increased acid tolerance.	bacterial virulence in chronic

			individual differences in		infections. These results highlight the
			caries development.		importance of developing novel
					approaches to diagnose high-risk
					patients and improve prevention and
					treatment of chronic infectious
					disease. The findings may also have
					relevance beyond dental caries and
					translate to improved systemic health.
McLaren <i>et</i>	Clinical trial	Exploring the short-	To explore the short-term	It was observed a worsening in primary tooth	Trends observed in caries rates in
<i>al.</i> - 2017		term impact of	impact of community	caries (deft) in Calgary and Edmonton, but	Calgary, Canada (especially in primary
(18)		community water	water fluoridation	changes in Edmonton were less consistent	teeth), along with other information
		fluoridation cessation	cessation on children's	and smaller. This effect was robust to	gathered, appear to be broadly
		on children's dental	dental caries, by	adjustment for covariates available in	consistent with an adverse effect of
		caries: a natural	examining change in	2013/14 and was consistent with estimates	community water fluoridation
		experiment in Alberta,	caries experience in	of total fluoride intake from biomarkers from	cessation. It is important to undertake
		Canada	population-based samples	a subsample. This finding occurred despite	subsequent oral health surveys to
			of schoolchildren in two	indication that treatment activities appeared	monitor and confirm these trends over
			Canadian cities, one that	better in Calgary. The worsening was not	time.
			discontinued community	observed for permanent teeth. For	
				prevalence estimates only (% with >0 deft or	

			water fluoridation and one	DMFT), the three data points in Calgary	
			that retained it	suggest a trend that, though small, appears	
				consistent with an adverse effect of	
				fluoridation cessation	
Sun <i>et al.</i> –	Clinical trial	Flagellin-rPAc vaccine	To investigate if the	Both serum and saliva from KF-rPAc	Besides the well-known blocking
2017		inhibits biofilm	antibody response	immunized rats significantly inhibited	adherence of <i>S. mutans</i> to salivary
(19)		formation but not	induced by KF-rPAc could	biofilm formation. Moreover, with the	glycoproteins by rPAc-specific
		proliferation of <i>S.</i>	inhibit biofilm formation	presence of serum or saliva, the biofilm	antibody, flagellin-rPAc vaccine could
		mutans	besides the adherence of	formation was negatively correlated with the	also protect teeth from caries by
			<i>S. mutans</i> to salivary	level of rPAc-specific antibody, and positively	inhibiting biofilm structure formation
			glycoproteins.	correlated with caries scores in rat.	in between bacteria.
				Additionally, in immunized mice, the level of	
				rPAc-specific antibody was also negatively	
				correlated with the biofilm formation. Unlike	
				ampicillin, serum of KF-rPAc immunized	
				mice only inhibited biofilm formation but not	
				proliferation.	
Ferreira <i>et</i>	Clinical trial	Sublingual	To observe the induction	Mice immunized with the vaccine	S. mutans PstS is a potential target
<i>al.</i> – 2016		immunization with	of protective immunity to	formulation induced specific systemic and	antigen capable of inducing specific
(20)		the phosphate-	<i>S. mutans</i> tooth		

		binding-protein	colonization after	secreted immune responses and controlled	and protective antibody responses
		(PstS) reduces oral	sublingual immunization	the adhesion of <i>S. mutans</i> to the oral cavity.	after sublingual administration.
		colonization by	of mice with vaccine		
		Streptococcus	formulations containing a		
		mutans	recombinant form of the		
			PstS protein, with a		
			derivative of the heat-		
			labile toxin (LT) in		
			combination with a		
			mucosal adjuvant.		
Li <i>et al</i> . –	Clinical trial	Enhancement of	To construct anticaries	Significantly higher specific IgG antibody	WapA is an excellent candidate for
2016		immunogenic	DNA vaccine and evaluate	titers were observed in rats immunized with	anticaries vaccine development and
(21)		response and	its ability to elicit mucosal	nanoparticles compared with rats	nanoparticles as an effective delivery
		protection in model	and systemic immune	immunized with naked pVAX1-wapA. Anti-	system.
		rats by CSTM	responses in rats.	WapA IgA and IgG antibody levels after	
		nanoparticles		intranasal immunization were significantly	
		anticaries DNA		higher than those following intramuscular	
		vaccine		delivery of nanoparticles or naked pVAX1-	
				wapA. Furthermore, fewer enamel, slight	
				dentin and dentin moderate lesions were	

				observed in rats immunized with	
				nanoparticles.	
Yan <i>et al</i> . –	Clinical trial	CCL17 combined with	To determine whether co-	Co-administration of the CCL17 and CCL19	A nasal adjuvant consisting of a
2016		CCL19 as a nasal	administration of CCL17	genes in mice caused a greater increase in	combination of CCL17 and CCL19
(22)		adjuvant enhances	and CCL19 could enhance	the number of mature DCs in the spleen and	attracts more mature DCs to secondary
		the immunogenicity	the immunogenicity of an	DLNs compared with administration of CCL17	lymphoid tissues, inducing enhanced
		of an anti-caries DNA	anti-caries DNA vaccine,	or CCL19 genes alone. CCL17 and CCL19	antibody responses against the anti-
		vaccine in rodents	pCIA-P, in rodents.	double-adjuvant plus pCIA-P induced	caries DNA vaccine pCIA-P and
				significantly higher levels of anti-PAc	reducing <i>S. mutans</i> infection in
				salivary IgA and anti-PAc serum IgG antibody	rodents than CCL17 or CCL19 alone.
				in mice and strengthened the ability of pCIA-	
				P in inhibiting the colonization of <i>S. mutans</i>	
				on rat tooth surfaces. The caries activity of	
				the combined adjuvant group was	
				significantly lower than that of the	
				pCCL17/VAX or the pCCL19/VAX group.	
Bachtiar <i>et</i>	Clinical trial	Biological and	To elucidate the effect of	The ComD antibody was successfully induced	lgY anti- <i>S. mutans</i> ComD reduces
<i>al</i> . – 2016		Immunogenicity	lgY anti ComD on the	in the hens' eggs. It inhibited biofilm	biofilm formation by this bacterium
(23)		Property of IgY Anti <i>S.</i>	biological properties of <i>S</i> .	formation by all <i>S. mutans</i> isolates. In	and alters the protein profile of <i>S</i> .
		<i>mutans</i> ComD	<i>mutans</i> . ComD is an	addition, the expression of some protein	mutans.

			interspecies quorum-	bands was affected after exposure to the	
			sensing signaling receptor	antibody.	
			that plays an important		
			role in biofilm formation		
			by <i>S. mutans</i> .		
Colombo <i>et</i>	Clinical trial	Relationship between	To explore the	Severe-early childhood caries (S-ECC)	Children with S-ECC have reduced
<i>al.</i> - 2016		the IgA antibody	associations between the	children had reduced family income	salivary IgA immune responses to <i>S.</i>
(24)		response against	severity of dental caries in	compared to those with early childhood	<i>mutans</i> GbpB, potentially
		Streptococcus	childhood, mutans	caries (ECC) and CF. There was difference	compromising their ability to modify
		<i>mutans</i> GbpB and	streptococci (MS) levels	between CF and caries groups (ECC and S-	MS infection and its cariogenic
		severity of dental	and IgA antibody response	ECC) in MS counts. Positive correlations	potential. Furthermore, a reduced
		caries in childhood	against <i>S. mutans</i> GbpB.	between salivary IgA antibody response	family income and high levels of MS
			Moreover, other caries-	against GbpB and MS counts were found	were also associated with S-ECC.
			related etiological factors	when the entire population was evaluated.	
			were also investigated.	When children with high MS counts were	
				compared, S- ECC group showed significantly	
				lower IgA antibody levels to GbpB compared	
				to CF group. This finding was not observed	
				for the ECC group.	

Bao <i>et al. –</i>	Clinical trial	Flagellin-PAc fusion	To investigate the	KF-rPAc by nasal immunization can promote	KF-rPAc could be used as an anticaries
2015		protein inhibits	therapeutic effect of a	PAc-specific systemic and mucosal antibody	therapeutic mucosal vaccine.
(25)		progression of	mucosal vaccine of	responses and inhibit dental caries	
		established caries	flagellin-PAc fusion	progression efficiently after the implant of S .	
			protein (KF-rPAc) against	mutans into the oral cavity of the rats. The	
			dental caries by using a	rats immunized with KF-rPAc exhibited	
			new immunization	53.9% caries reduction compared with the	
			protocol on the dental	sham-immunized rats.	
			caries progression in rats		
			with prior implant of <i>S.</i>		
			<i>mutans</i> into their oral		
			cavities.		
Batista <i>et al.</i>	Clinical trial	Immunogenicity and	To investigate the	Recombinant P139-512 preserves relevant	These findings confirm the utility of
- 2014		<i>in vitro</i> and <i>in vivo</i>	immunological features of	conformational epitopes as well as salivary	P139-512 as a potential candidate for
(26)		protective effects of	P139-512 after parenteral	agglutinin (SAG)-binding activity. Co-	the development of anti-caries
		antibodies targeting a	administration of mice in	administration of adjuvants enhanced anti-	vaccines, and as a tool for functional
		recombinant form of	combination with	P1 serum antibody responses and affected	studies of <i>S. mutans</i> P1.
		the <i>Streptococcus</i>	different adjuvants: alum,	both epitope specificity and immunoglobulin	
		<i>mutans</i> P1 surface	a derivative of the heat	subclasses switching. Importantly, P139-	
		protein		512–specific antibodies raised in mice	

			labile toxin (LT), and	immunized with adjuvants showed	
			<i>Salmonella flagellin</i> (FliCi).	significantly increased inhibition of <i>S</i> .	
				mutans adhesion to SAG, with less effect on	
				SAG-mediated bacterial aggregation, an	
				innate defense mechanism. Oral colonization	
				of mice by <i>S. mutans</i> was impaired in the	
				presence of anti-P139-512 antibodies,	
				particularly those raised in combination with	
				adjuvants.	
Li <i>et al.</i> –	Clinical trial	Streptococcus	To observe the effects of	WapA could be recognized by DCs by certain	WapA is recognized by DCs and
2014		<i>mutans</i> Wall-	WapA on DCs (dentritic	specific receptors and promote the	promotes DC maturation, which puts
(27)		Associated Protein A	cell).	maturation of DCs through increasing TLR4-	new lights on the function of WapA.
		Promotes TLR4-		induced NF-jBand MAPK activation.	
		Induced Dendritic Cell			
		Maturation			
Su <i>et al.</i> –	Clinical trial	Intranasal co-delivery	To investigate the effects	Marked expression of IL-6 was found in COS-	Intranasal co-delivery of IL-6 gene
2014		of IL-6 gene	of co-delivering IL-6	7 cells transfected with pCI-IL-6. In the pCI-	significantly enhances the
(28)		enhances the	expressing plasmid pCI-IL-	IL-6 co-immunized mice, the specific IgG	immunogenicity of the anti-caries DNA
		immunogenicity of	6 on the immunogenicity	antibodies in serum and slgA antibodies in	vaccine.
			of the anti-caries DNA	saliva were significantly higher than those in	

		anti-caries DNA	vaccine pCIA-P, which	the control mice at weeks 4 and 8. Moreover,	
		vaccine	encodes the surface	the secretion of IFN- γ from splenocytes in	
			protein antigen PAc of <i>S.</i>	response to re-stimulation with PAc protein	
			mutans.	was significantly higher in the pCI-IL-6 co-	
				immunized mice than that in the control	
				mice, whereas the secretion of IL-4 had no	
				significant difference. The proliferation of	
				splenocytes from the pCI-IL-6 co-immunized	
				mice was significantly higher than that from	
				the mice immunized with pCIA-P and pCI	
				vector. In the rat caries model, the pCI-IL-6	
				co-immunization rats displayed lower caries	
				scores than the control rats.	
Chen <i>et al.</i>	Clinical trial	Enhanced Nasal	To report a new designed	The AL/CS/DNA induced a significantly	The developed nanoparticles offer a
- 2013		Mucosal Delivery and	nanoparticle system	(p,0.01) higher level of secretory IgA (SIgA),	potential platform for DNA vaccine
(29)		Immunogenicity of	through incorporating	and a longer-term mucosal immunity than	packaging and delivery for more
		Anti-Caries DNA	anionic liposomes (AL)	the CS/DNA in animal study. On the other	efficient elicitation of mucosal
		Vaccine through	into chitosan/DNA	hand, the AL/CS/DNA exhibited minimal	immunity.
		Incorporation of	(CS/DNA) complexes.	cytotoxicity.	
		Anionic Liposomes in			

		Chitosan/DNA			
		Complexes			
Yan <i>et al. –</i>	Clinical trial	Co-delivery of ccl19	To investigate how co-	The expression level of CCL19-GFP fusion	CCL19 serves as an effective adjuvant
2013		gene enhances anti-	delivery of the gene	protein was considerably increased 48 h	for anti-caries DNA vaccine by
(30)		caries DNA vaccine	encoding C–C chemokine	after transfection of COS-7 cells with	inducing chemotactic migration of DCs
		pCIA-P	ligand-19 (CCL-19)	pCCL19/GFP plasmids. The fusion protein	to secondary lymphoid tissues.
		immunogenicity in	affected the systemic	showed potent chemotactic activity on DCs	
		mice by increasing	immune responses to an	<i>in vitro</i> . The level of serum PAc-specific IgG	
		dendritic cell	anti-caries DNA vaccine	was significantly increased from 4 to 14	
		migration to	pCIA-P in mice.	weeks in the mice vaccinated with pCIA-P	
		secondary lymphoid		plus pCCL19/GFP. Compared to mice	
		tissues		vaccinated with pCIA-P alone, the	
				splenocytes from mice vaccinated with pCIA-	
				P plus pCCL19/GFP produced significantly	
				higher level of IFN- γ , but IL-4 production had	
				no significant change. Following	
				intramuscular co-delivery, pCCL19/GFP	
				plasmid and fusion protein were detected in	
				the spleen and draining lymph nodes.	
				Administration of CCL19 gene in mice	

				markedly increased the number of mature	
				DCs in secondary lymphoid tissues.	
Shi <i>et al.</i> –	Clinical trial	Flagellin enhances	To analyze the effects of	FliC promoted the production of PAc-specific	FliC could enhance specific IgA
2012		saliva IgA response	FliC protein on the serum	IgG in serum and secretory IgA (S-IgA) in	responses in saliva and protective
(31)		and protection of	PAc-specific lgG and saliva	saliva of rats by intranasal immunization	ability of pGJA-P/VAX, providing an
		anti-caries DNA	PAc-specific IgA antibody	with pGJA-P/VAX plus FliC.	effective mucosal adjuvant candidate
		vaccine	responses, the	Enhanced PAc-specific IgA responses in	for intranasal immunization of an anti-
			colonization of <i>S. mutans</i>	saliva were associated with the inhibition of	caries DNA vaccine.
			on rat teeth, and the	<i>S. mutans</i> colonization of tooth surfaces and	
			formation of caries	endowed better protection with significant	
			lesions.	fewer caries lesions.	
Sun Y et al.	Clinical trial	Flagellin-PAc fusion	To evaluate the ability of	KF-rPAc promoted significantly higher rPAc-	Flagellin and PAc fusion strategy is
- 2012		protein is a high-	KF-rPAc to promote an	specific antibodies in serum as well as in	promising for anti-caries vaccine
(32)		efficacy anti-caries	rPAc-specific salivary IgA	saliva than did an equivalent dose of rPAc	development, and KF-rPAc could be
		mucosal vaccine	antibody response and	alone or a mixture of KF + rPAc. Intranasal	used as an anti-caries mucosal
			protective efficacy against	immunization of 8.5 µg KF-rPAc could	vaccine.
			caries in rat.	achieve 64.2% reduction of dental caries in	
				rats.	
Kim <i>et al.</i> –	Clinical trial	A monoclonal	To investigate the	A hybridoma cell line, HBN8, that produced	The anti-GTFBN antibody could be
2012		antibody specific to	inhibitory activity of the	MAb against the GTFBN protein of <i>S. mutans</i>	used as a vaccine to prevent the

(33)	glucosyltransferase B	monoclonal antibody	GS-5 was established. This MAb could inhibit	aggregation of <i>S. mutans</i> on teeth
	of Streptococcus	against the formation of	the glucan-producing activity of crude GTFs	surfaces, and thus prevent the
	<i>mutans</i> GS-5 and its	insoluble glucans that are	in a dose-dependent manner.	formation of dental caries.
	glucosyltransferase	important in <i>S. mutans</i>		
	inhibitory efficiency	and other oral bacteria for		
		bacterial tooth surface		
		attachment and the		
		formation of dental		
		plaque.		

5. DISCUSSION

a. The caries

Dental caries is a multifactorial disease and a dynamical fluctuating disease process (1). Modern diet has changed the morphology of our dentition, which was different some millennia ago. New high sugary diet is softer and more liquid than before, so our teeth are less required, which might explain why teeth can be rapidly lost (1), and why caries are more likely to be found in developed countries rather than in developing countries. Even though sex and ethnic differences can be a factor, it is still minor compared to sugar consumption, lifestyle and economic differences (1).

Frequent ingestion of carbohydrate (sugar), poor oral hygiene and inadequate exposure tends to favor more caries (1).

i. Mechanisms

The mechanisms and pathophysiology underlying the development of dental caries are now extremely well understood. It occurs by a dynamic process that involves repeated cycles of demineralization and remineralization (1).

1. Demineralization

Bacteria from the biofilm produces acid from the metabolization of fermentable carbohydrates, which demineralizes crystalline mineral structure. Caries usually initiates below the enamel surface (1).

2. Remineralization

The saliva then neutralizes the acids, making the biofilm's pH neutral and saturated with fluoride, phosphate and calcium. (1)

3. Lesion

If demineralization does not stop, the mineral loss is greater in the subsurface than in the surface, creating a lesion at subsurface level. A white spot can appear if there is sufficient mineral

lost. But if the causative factors are modified or preventive measures are used, the lesion can be stopped or reversed. For example, we can use fluoride on caries in early stages (subclinical). Maintaining the mineral homeostasis is the key to keep a healthy tooth. (1)

4. International Caries Detection and Assessment System (ICDAS) It's an evidence-based system for detection and classification of caries.

The codes 1 and 2 are already considered demineralized. They can stop and remain as an inactive lesion with application of fluoride, changes in the diet and in the local ecology.

The codes 3 and 4 are used if the surface porosity increases with micro cavitation on the enamel or in the surface dentine layer for root caries, then

The codes 5 and 6 are used when there is a physical cavitation, and the dentin can be seen. The lesion can still be stopped but, if it continues, the pulp can be compromised. In this case the only options are extraction or root canal. (1)

ii. Microbiome

The wild living animal species have a harmonious balance between their oral microbiome and them, and we should also find a way to have such a harmonious co-existence despite our modern-day lifestyle. To eliminate the oral microbiome is not the solution.

Human oral microbiome has greatly changed since the Neolithic period (12,000 to 7,000 years ago). First, humans had a hunter-gatherer diet, then a farming lifestyle to a sugary industrialized diet around 1850s, to finish with modern processed foods, smoking habits, antimicrobials and vaccines. Those changes put our microbiome into a disease-associated configuration, making the oral microbiome less diversified, "*less resistant to perturbation and with a greater susceptibility to the insertion of pathobionts or even true pathogens in the microbial community*". (2)

1. Caries microbiome

"On caries active and caries-free individuals, the supragingival microbiome is approximately the same, at around 50%. Only 10 genera were expressed in high abundance, including Streptococcus spp., Veillonella spp and Actinomyces spp. S. mitis (25.5%) and S. sanguinis (9.1%) were predominant. S. mutans (1.2%) was a comparatively minor constituent"

(2). These studies suggest that the caries is more complex and multi-faceted than what is thought.

Glycoprotein from the salivary film facilitates biofilm formation, by interacting with adhesins.

"S. mutans is only associated with caries initiation (white spots) but not with caries progression. S. mutans appears to have the characteristics of a keystone pathogen or of a pathobiont driven by a changing dietary environment" (2).

2. Streptococcus mutans

S. mutans was discovered in 1924 by J. Clarke. It lives in the dental plaque, thanks to the three GTF it produces (namely GtfB, -C and -D), synthesizing glucose polymers of glucan. It also encodes some GBP (A, B, C and D). Its adhesins enable colonization even without sucrose. The dual antigen I/II, also named P1, SpaP or Pac, is one of the most studied antigens. Indeed, P1 deficient mutant demonstrates reduced binding to saliva, aberrant biofilm formation and a reduced cariogenicity in a rat caries model. GTF, GBP and adhesive glucans promote accumulation of microbial cells and form a polymeric matrix which protects the embedded bacteria. (34)

S. mutans is one of the main targets for caries prevention. Some products, such as propolis, curcumin, cranberry, and green tea extracts seem to be effective against *S. mutans* but aren't selective towards it. (34) There are other promising approaches against *S. mutans* as described by Al-Ansari *et al.* who showed that AgNPs antibiotic can also affect *S. mutans* (6). Xu *et al.* also showed that EgCG nanovesicles suppress the activity of GTF, inhibiting the formation of glucan and biofilm from *S. mutans*. (5)

3. Immunity against caries

"Individuals with low or non-detectable levels of Mutans streptococci early in life remain caries-free into adulthood" (2). Early oral colonization and colonized individuals experience are inversely related to salivary IgA antibody. Bacterial adhesin, GTF and GBP are the main targets.

"Early in childhood, children begin to synthesize serum IgG antibody to Mutans streptococcal antigens, followed in time by production of IgA. Serum IgG antibody levels increase during childhood and remain detectable throughout life. In young adults, anti-S. mutans IgG titers are inversely related to disease levels. In older adults, serum IgG antibody to cariogenic streptococci is directly related to cumulative dental caries experience, whereas IgA levels are

inversely related. This reciprocal relationship between IgA and IgG responses throughout life indicates that the initial adaptive immune responses to mutans streptococcal antigens may influence the time and rate at which these streptococci join the biofilms of the primary dentition" (2).

Colombo *et al.* showed that children having S-ECC have reduced salivary IgA immune response to *S. mutans.* (24)

iii. Prevention

"The goals of dental caries prevention are to preserve sound tooth structure, to prevent demineralization of enamel and to promote natural healing processes" (1). There are several different ways to prevent caries formation. Some are basic, like education of the people, by promoting oral hygiene and encouraging less sugar consumption. Other methods include the fluoridation of community water, salt and milk. A study by McLaren *et al.* done in Calgary, Canada, in 2017 showed that fluoridation of community water has negative effects over the population if stopped, proving that prevention can truly have a positive effect over the population oral health. (18)

b. The vaccine

Vaccination is one of the most important discoveries of medicine. Its purpose is "*to induce a protective immune response to the targeted pathogen without the risk of acquiring the disease and its potential complications*" (4). By doing that, it will mimic the natural interaction of the pathogen with the immune system, creating an immune memory.

The first line of defense of an organism is the innate immunity. It is not specific and it has no memories, taking only a few hours to be established.

The second line of defense is the adaptive immunity. Lymphocytes and antibodies can recognize and eliminate all know pathogens. This appears at a later stage of the infection.

The antigen-presenting cells or APC comprise dendritic cells (DC), macrophages, B lymphocytes or B cells. Through their major histocompatibility complex (MHC) class II, they present the antigen, which will be recognize by the lymphocyte T CD4 (LTCD4).

A vaccine needs to have three major characteristics:

- Being efficient (inducing long duration protection and immune memory)
- Being safe

- Being easy to administrate (modality and number of administration doses) (3,4)

i. The different types of vaccines

1. Live attenuated vaccine

The vaccine uses the pathogen, which is weakened, altered or selected to be less virulent, by passing the pathogen through a series of in vitro cell cultures, allowing the pathogen to only mimic the wild pathogen in a very soft way, causing an attenuated or asymptomatic disease to stimulate the immune response.

Its main propriety is to confer an immunogenicity almost as if the person got the wild pathogen. The immunogenicity is achieved between 10 and 14 days. It does not need adjuvant and it only needs a small number of doses (2 or 3). It is injected in a sub-cutaneous way.

This type of vaccine is contraindicated in pregnant women because of fetal infection causing congenital disease, and in immunocompromised individuals, causing death in case of unregulated pathogen replication (however, it can be used in some cases after a critical benefit-risk assessment). It should be noted that, in very rare occasions, the virus can revert to a form able to cause the disease. (3,4)

2. Non live vaccines

The vaccines don't contain any living or infectious particles and are very safe (even for immunocompromised people or pregnant women).

a. Inactivated vaccine

The vaccine contains the totality of the bacteria or viral particles inactivated by chemicals, radiation or thermal methods. The inactivation consists of destroying the ability of the pathogen to replicate while keeping the immunogenicity, allowing the system to recognize it.

It needs multiple administration to have a long-term protection, and some adjuvants. (3,4)

b. Subunit vaccine

In this case, the vaccine contains a selected active fragment of the pathogen inducing vaccinal immunity. The fragment may be a polysaccharide, a protein, or the part of it that may form virus-like particles (VLP).

It needs adjuvant, the immunogenicity is lower, and the person needs multiple primo injection plus booster doses during his life.

There are different types of subunit vaccine, such as protein vaccine, toxoid, VLP, polysaccharide and polysaccharide conjugate vaccine.(3,4)

ii. Adjuvants

They are needed to induce a strong and long immune response. They enhance and amplify the initial immune response, especially in population having low response levels such as immunocompromised, elderly and infant. They also reduce the number of doses. (3,4)

iii. Future vaccines

1. DNA/RNA vaccine

One of the most promising ways of making vaccines is to insert "*DNA or RNA that encodes antigenic proteins into body cells (e.g. muscle or skin cells), which induces antigen presentation to the immune system, triggering an immune response* "(4).

There are many licensed DNA vaccines for animals, but only one for humans, the ZyCoV-D, made by the Indian Cadila Healthcare laboratory and allowed on the 20th of august 2021 by the Drugs Controller General of India, DCGI. Its efficacy is 66,6% against clinical form of Covid and 100% against serious forms. (35)

2. Vectored vaccine

It combines live and subunit vaccines advantages. It is made from *"non-pathogenic infectious viruses expressing antigenic protein genes of a pathogen. The viral vectors are derived from retroviruses, herpes simplex viruses, adenoviruses or poxviruses, and have been developed for vaccination against a wide array of pathogens".*(4)

The main problems are an early vaccine clearance and reduced immunogenicity. This is due to high prevalence from pre-exposure to the virus, leading to neutralizing antibodies against the vectors. (4)

3. New type of injection

The conventional routes of administration are intramuscular, subcutaneous and intradermal injections. But new methods are being developed to improve vaccine acceptance among people who are afraid of needles, making it more comfortable. These methods may be through skin, using microneedle or needle-free devices, or through mucosal tissues (oral, sublingual or intranasal).

Systemic and mucosal immune responses should also be induced at the site of pathogen entry (4).

c. The anti-caries vaccine

i. Types of vaccines

As DNA vaccines are very promising, the research about making an anti-caries DNA vaccine is documented in this work. In 2019, Bai *et al.* found that transgenic tomato can be used to produce antigens for an anti-caries DNA vaccine. (9)

The subunit vaccine is also studied. In fact, the sublingual administration of a P1-based subunit vaccine represents a promising approach for the prevention of dental caries caused by *S. mutans* (26).

Mucosal vaccine could use Flagellin and PAc fusion strategy as a promising way (32), or KF-rPAc (25).

The passive immunization strategy consists of administering *ready-made antibodies, which circulate in the body and impart specific protection* (36). It has been discovered that *S. mutans* and *S. sobrinus* Fabs could be used for the development of the vaccine (13).

ii. The different adjuvants

We can observe that articles from around 10 years ago tried to focus more on the research of an adjuvant, as result FliC protein, or CCL19 are potential effective candidate (30,31). In 2016, Yan *et al.* tried the co-administration of CCL19 and CCL17 as a nasal adjuvant, claiming that it could also be a good candidate (22). The role of adjuvants on the epitope specificity was also disclosed by Batista *et al.* in 2017 (26). More recently, the combination of chitosan + Pam3CSK4 or chitosan + MPL was considered promising (11).

iii. The delivery systems

There are many delivery vehicles depending on the type of vaccine. Attenuated *Salmonella* can be used for mucosal immunization (16).

Intranasal spray is one of the best ways. It's easy to administer, painless, and does not require professional staff, which makes it more acceptable for people, especially children (10).

In 2013, Chen *et al.* discovered that nanoparticles can be useful for packaging and delivering DNA vaccines. And, in 2016, Li *et al.* confirmed that nanoparticles are an effective delivering system (21,29).

iv. The inhibition of biofilm formation or aggregation of *S. mutans* Some research works are about preventing the aggregation of *S. mutans* on tooth surfaces. This could be done by the anti-GTFBN antibody.

Other studies are about reducing or inhibiting the biofilm, by using IgY anti-*S. mutans* ComD, altering the protein profile of *S. mutans* (23), or by using flagellin-rPAc vaccine, blocking the adherence of *S. mutans* to salivary glycoproteins (19).

In 2016, Ferreira *et al.* stated that *S. mutans* PstS is a potential target antigen, inducing specific protective antibody after sublingual administration (20).

v. The enhancement of immunogenicity

Some articles showed that the immunogenicity can be enhanced, for example with the intranasal co-delivery of IL-6 expressing plasmid pCI-IL-6 or with the combination of CCL17 and CCL19 as a nasal adjuvant (22,28). More recently, Liu *et al.* showed that recombinant FimH-S.T could enhance specific IgA responses and protection of anti-caries vaccines (11). Additionally, Jia *et al.* demonstrated that attenuating the inhibition of endogenous miR-9 enhanced the antigen expression and immunogenicity of the anti-caries DNA vaccine (8).

In 2014, Batista *et al.* showed that WapA is recognize and promotes DC maturation, and, in 2016, Li *et al.* confirmed that WapA is an excellent candidate for the vaccine (21,27).

vi. Other potential candidates

Over the years, many promising potential candidates for the development of the vaccine were found. One of them is the glycoconjugates of the rhamnan polymers of *S. mutans* to target

dental caries (14). Another one is the cold-adapted influenza virus, which could be used to develop the vaccine (10).

d. Global point of view

i. For which population?

"In 2010, untreated caries in deciduous teeth was the tenth most prevalent health condition, affecting 9% of the global child population" (37).

"Untreated caries in permanent teeth was the most prevalent health condition in 2010, affecting 35% of the global population, or 2,4 billion people worldwide" (37).

Caries experience or untreated caries lesions are significantly associated with lower socioeconomic position. Indeed, extreme oral health inequalities existed for this classes and marginalized groups (homeless, prisoners, refugees, indigenous groups and people with long-term disabilities...). In the USA, "*prisoners had 8,4 times more untreated caries than non-institutionalized US adults*" (37). Disabled persons have more untreated caries than the rest of the population.

A study conducted by Li *et al.* in 2021 showed that "*almost 30% of Chinese seniors have no remaining teeth, and that only 19% of elderly Chinese had visited a dentist in the past year*" (7). Old people are also a population more subject to caries than other groups. Plus, they tend to go less often to the dentist, waiting for a potential caries to become more important, which makes them a targeted population for the vaccine.

School absenteeism due to caries treatments can greatly affect school performance, exacerbating social inequalities. It also affects the quality of people's life (adults and children) because of the pain, problems with chewing, biting and eating. Additionally, it affects social and family activities, making the emotions expression more difficult (37).

ii. Economy

Caries inflicts high costs on the society, not only by the direct (the treatments), but also by the indirect (productivity losses due to absence from school or work) costs. "*In the 28 EU member states in 2015, dental diseases (€90 billion) ranked third behind diabetes (€119 billion) and cardiovascular diseases (€111 billion)*"(37).

Caries prevention has a high cost for both the individual and the public health system.

Even if preventive strategies are cost effective and money saving to the public health system, they'll still have a great impact on the economy for the time it takes to be effective (1).

Despite the major cost, oral diseases are rarely seen as a health priority, making the dentistry profession marginalized in health policy (37).

In China, among the people with rural insurance, 31% are edentulous and, among the urban insured, 19% are edentulous. The urban area shows more people with teeth remaining than the rural area, perhaps because the salaries are higher in urban area, allowing people access to health care more easily. Additionally, there might be a higher rate of dentist studios in these areas (7).

iii. Limitations

Nowadays, most of the studies are focused on short-term comparison of preventive ways such as comparing fissure sealant and conventional filling. However, studies on the long-term costs are still lacking. "*Few robust studies looking at the costs and benefits of using behavioral change techniques to modify caries risk or of using anticipatory guidance or modifying oral health literacy exist. These topics need further research across disciplines"* (1).

Moreover, the anti-caries vaccine doesn't exist yet. Studies comparing the potential cost saving, along with more traditional prevention methods, are needed. So, we can ask ourselves if the public services will save money for a short-, mid- or long-term period.

Knowing that oral health care isn't a priority, we can ask ourselves if the governments around the world would agree to support the vaccination costs for their populations. We can also wonder if they will make the vaccine available for everyone or only a part of the population.

One of the major challenges is to fight back the adversity for vaccination, knowing that people can be very mistrustful regarding vaccines, as we have seen during the Covid-19 pandemic. Will the vaccine be accepted by the population?

Will the vaccine change the dentistry? Access to an effective vaccine will dramatically reduce the incidence of caries. Is it possible that the reduction of dentists' workload could bring the job to its end? Are the dentists willing to accept the vaccine, knowing it could potentially bring less work for them or even make them lose their job? Will the dentists protest, to make sure the vaccine won't be used and they can stick to their job?

When will the vaccine be available, will it be in a few years or later? Will the vaccine have adverse effects?

6. CONCLUSION

The caries can affect anyone at any age, it can cause much pain and discomfort, decreasing social interaction and productivity at work. The more a person waits to treat it, the higher the cost will be, for the person and for the country. The caries is also a factor of social inequality, with lower social classes more impacted than higher ones. There is already some way of prevention, like water or salt fluoridation. An anti-caries vaccine could potentially be a good way of preventing the disease, but it also comes with some limitations, such as the time needed to develop it, the adversity for vaccination among the population, the long-term cost (which is to be determined), and the possibility of affecting the dentistry profession by decreasing its workload.

DNA, mucosal and subunit vaccines are some of the most promising types of vaccines. New adjuvants, such as the combination of chitosan + Pam3CSK4 or chitosan + MPL, FliC protein, or a co-administration of CCL19 with CCL17, are being tested. All of them showed good perspectives for the future. Delivery systems like nanoparticles or intranasal sprays have shown good results. *S. mutans* is the major target of the vaccine, which can act by preventing its aggregation, or the biofilm formation, by inhibiting or reducing it. Some trials succeeded in enhancing the immunogenicity of the vaccine. Overall, the results achieved so far have brought a good hope for the future.

However, more studies should be made to answer all the questions that are lacking a response.

7. BIBLIOGRAPHICAL REFERENCES

- 1. Pitts NB, Zero DT, Marsh PD, Ekstrand K, Weintraub JA, Ramos-Gomez F, Tagami J, Twetman S, Tsakos G, Ismail A. Dental caries. Nat Rev Dis Primers. 2017 May 25;3:17030.
- 2. Kilian M. The oral microbiome friend or foe? Eur J Oral Sci. 2018 Oct;126 Suppl 1:5-12.
- 3. Canouï E, Launay O. Histoire et principes de la vaccination [History and principles of vaccination]. Rev Mal Respir. 2019 Jan;36(1):74-81.
- 4. Vetter V, Denizer G, Friedland LR, Krishnan J, Shapiro M. Understanding modern-day vaccines: what you need to know. Ann Med. 2018 Mar;50(2):110-120.
- 5. Xu X, Dai Z, Zhang Z, Kou X, You X, Sun H, Guo H, Liu M, Zhu H. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur J Pharmacol. 2021 Apr 15;897:173951.
- 6. Al-Ansari MM, Al-Dahmash ND, Ranjitsingh AJA. Synthesis of silver nanoparticles using gum Arabic: Evaluation of its inhibitory action on Streptococcus mutans causing dental caries and endocarditis. J Infect Public Health. 2021 Mar;14(3):324-330.
- 7. Li C, Yao NA. Socio–Economic Disparities in Dental Health and Dental Care Utilisation Among Older Chinese. International Dental Journal. 2021 Feb 1;71(1):67–75.
- Jia R, Yan L, Guo J. Enhancing the immunogenicity of a DNA vaccine against Streptococcus mutans by attenuating the inhibition of endogenous miR-9. Vaccine. 2020 Feb 5;38(6):1424–30.
- 9. Bai G, Tian Y, Wu J, Gu Y, Chen Z, Zeng F, et al. Construction of a fusion anti-caries DNA vaccine in transgenic tomato plants for PAcA gene and cholera toxin B subunit. Biotechnology and Applied Biochemistry. 2019 Nov 1;66(6):924–9.
- 10. Yang H, Yan Z, Zhang Z, Realivazquez A, Ma B, Liu Y. Anti-caries vaccine based on clinical cold-adapted influenza vaccine: A promising alternative for scientific and public-health protection against dental caries. Med Hypotheses. 2019 May;126:42-45.
- 11. Liu ZF, Chen JL, Li WY, Fan MW, Li YH. FimH as a mucosal adjuvant enhances persistent antibody response and protective efficacy of the anti-caries vaccine. Arch Oral Biol. 2019 May;101:122-129.
- Bi Y, Xu Q, Su L, Xu J, Liu Z, Yang Y, Tang H, Li Y, Fan M. The Combinations Chitosan-Pam₃CSK₄ and Chitosan-Monophosphoryl Lipid A: Promising Immune-Enhancing Adjuvants for Anticaries Vaccine PAc. Infect Immun. 2019 Nov 18;87(12):e00651-19.
- 13. Alam MK, Zheng L, Liu R, Papagerakis S, Papagerakis P, Geyer CR. Synthetic antigenbinding fragments (Fabs) against S. mutans and S. sobrinus inhibit caries formation. Sci Rep. 2018 Jul 5;8(1):10173.
- 14. St Michael F, Yang Q, Cairns C, Vinogradov E, Fleming P, Hayes AC, Aubry A, Cox AD. Investigating the candidacy of the serotype specific rhamnan polysaccharide based glycoconjugates to prevent disease caused by the dental pathogen Streptococcus mutans. Glycoconj J. 2018 Feb;35(1):53-64.
- 15. Batista MT, Ferreira EL, Pereira GS, Stafford P, Maeda DLNF, Rodrigues JF, Brady LJ, Johnston SA, Ferreira LCS, Ferreira RCC. LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1. Vaccine. 2017 Dec 19;35(52):7273-7282.

- 16. Jiang H, Hu Y, Yang M, Liu H, Jiang G. Enhanced immune response to a dual-promoter anti-caries DNA vaccine orally delivered by attenuated Salmonella typhimurium. Immunobiology. 2017 May;222(5):730-737.
- 17. Esberg A, Sheng N, Mårell L, Claesson R, Persson K, Borén T, Strömberg N. Streptococcus Mutans Adhesin Biotypes that Match and Predict Individual Caries Development. EBioMedicine. 2017 Oct;24:205-215.
- 18. McLaren L, Patterson S, Thawer S, Faris P, McNeil D, Potestio ML, Shwart L. Exploring the short-term impact of community water fluoridation cessation on children's dental caries: a natural experiment in Alberta, Canada. Public Health. 2017 May;146:56-64.
- 19. Sun Y, Yang Y, Zhou D, Cao Y, Yu J, Zhao B, Zhong M, Li Y, Yang J, Yan H. Flagellin-rPAc vaccine inhibits biofilm formation but not proliferation of S. mutans. Hum Vaccin Immunother. 2016 Nov;12(11):2847-2854.
- 20. Ferreira EL, Batista MT, Cavalcante RC, Pegos VR, Passos HM, Silva DA, Balan A, Ferreira LC, Ferreira RC. Sublingual immunization with the phosphate-binding-protein (PstS) reduces oral colonization by Streptococcus mutans. Mol Oral Microbiol. 2016 Oct;31(5):410-22.
- 21. Li H, Lu Y, Xiang J, Jiang H, Zhong Y, Lu Y. Enhancement of immunogenic response and protection in model rats by CSTM nanoparticles anticaries DNA vaccine. Nanomedicine (Lond). 2016 Jun;11(11):1407-16.
- 22. Yan YH, Yu F, Zeng C, Cao LH, Zhang Z, Xu QA. CCL17 combined with CCL19 as a nasal adjuvant enhances the immunogenicity of an anti-caries DNA vaccine in rodents. Acta Pharmacol Sin. 2016 Sep;37(9):1229-36.
- 23. Bachtiar EW, Bachtiar BM, Soejoedono RD, Wibawan IW, Afdhal A. Biological and Immunogenicity Property of IgY Anti S. mutans ComD. Open Dent J. 2016 Jun 15;10:308-14.
- 24. Colombo NH, Pereira JA, da Silva ME, Ribas LF, Parisotto TM, Mattos-Graner Rde O, Smith DJ, Duque C. Relationship between the IgA antibody response against Streptococcus mutans GbpB and severity of dental caries in childhood. Arch Oral Biol. 2016 Jul;67:22-7.
- Bao R, Yang JY, Sun Y, Zhou DH, Yang Y, Li YM, Cao Y, Xiao Y, Li W, Yu J, Zhao BL, Zhong MH, Yan HM. Flagellin-PAc Fusion Protein Inhibits Progression of Established Caries. J Dent Res. 2015 Jul;94(7):955-60.
- Batista MT, Ferreira EL, Pereira GS, Stafford P, Maeda DLNF, Rodrigues JF, Brady LJ, Johnston SA, Ferreira LCS, Ferreira RCC. LT adjuvant modulates epitope specificity and improves the efficacy of murine antibodies elicited by sublingual vaccination with the N-terminal domain of Streptococcus mutans P1. Vaccine. 2017 Dec 19;35(52):7273-7282.
- 27. Li H, Wang D. Streptococcus mutans wall-associated protein A promotes TLR4-induced dendritic cell maturation. Scand J Immunol. 2014 Aug;80(2):121-6.
- 28. Su LK, Yu F, Li ZF, Zeng C, Xu QA, Fan MW. Intranasal co-delivery of IL-6 gene enhances the immunogenicity of anti-caries DNA vaccine. Acta Pharmacol Sin. 2014 May;35(5):592-8.
- 29. Chen L, Zhu J, Li Y, Lu J, Gao L, Xu H, Fan M, Yang X. Enhanced nasal mucosal delivery and immunogenicity of anti-caries DNA vaccine through incorporation of anionic liposomes in chitosan/DNA complexes. PLoS One. 2013 Aug 20;8(8):e71953.

- 30. Yan YH, Qi SC, Su LK, Xu QA, Fan MW. Co-delivery of ccl19 gene enhances anti-caries DNA vaccine pCIA-P immunogenicity in mice by increasing dendritic cell migration to secondary lymphoid tissues. Acta Pharmacol Sin. 2013 Mar;34(3):432-40.
- 31. Shi W, Li YH, Liu F, Yang JY, Zhou DH, Chen YQ, Zhang Y, Yang Y, He BX, Han C, Fan MW, Yan HM. Flagellin enhances saliva IgA response and protection of anti-caries DNA vaccine. J Dent Res. 2012 Mar;91(3):249-54.
- 32. Sun Y, Shi W, Yang JY, Zhou DH, Chen YQ, Zhang Y, Yang Y, He BX, Zhong MH, Li YM, Cao Y, Xiao Y, Li W, Yu J, Li YH, Fan MW, Yan HM. Flagellin-PAc fusion protein is a high-efficacy anti-caries mucosal vaccine. J Dent Res. 2012 Oct;91(10):941-7.
- 33. Kim MA, Lee MJ, Jeong HK, Song HJ, Jeon HJ, Lee KY, Kim JG. A monoclonal antibody specific to glucosyltransferase B of Streptococcus mutans GS-5 and its glucosyltransferase inhibitory efficiency. Hybridoma (Larchmt). 2012 Dec;31(6):430-5.
- Lemos JA, Palmer SR, Zeng L, Wen ZT, Kajfasz JK, Freires IA, Abranches J, Brady LJ. The Biology of *Streptococcus mutans*. Microbiol Spectr. 2019 Jan;7(1):10.1128/microbiolspec.GPP3-0051-2018.
- 35. Porter KR, Raviprakash K. DNA Vaccine Delivery and Improved Immunogenicity. Curr Issues Mol Biol. 2017;22:129-138.
- 36. Patel M. Dental caries vaccine: are we there yet? Lett Appl Microbiol. 2020 Jan;70(1):2-12.
- 37. Peres MA, Macpherson LMD, Weyant RJ, Daly B, Venturelli R, Mathur MR, Listl S, Celeste RK, Guarnizo-Herreño CC, Kearns C, Benzian H, Allison P, Watt RG. Oral diseases: a global public health challenge. Lancet. 2019 Jul 20;394(10194):249-260.
- 38. Righolt AJ, Jevdjevic M, Marcenes W, Listl S. Global-, Regional-, and Country-Level Economic Impacts of Dental Diseases in 2015. J Dent Res. 2018 May;97(5):501-507.
- 39. Costalonga M, Herzberg MC. The oral microbiome and the immunobiology of periodontal disease and caries. Immunol Lett. 2014 Dec;162(2 Pt A):22-38.
- 40. Rosier BT, De Jager M, Zaura E, Krom BP. Historical and contemporary hypotheses on the development of oral diseases: are we there yet? Front Cell Infect Microbiol. 2014 Jul 16;4:92.
- 41. Yan H. Salivary IgA enhancement strategy for development of a nasal-spray anti-caries mucosal vaccine. Sci China Life Sci. 2013 May;56(5):406-13.
- 42. Shanmugam Kt, Masthan Kmk, Balachander N, Sudha J, Sarangarajan R. Dental caries vaccine a possible option? J Clin Diagn Res. 2013 Jun;7(6):1250-3.

ANNEX

Table 3: Additional informations

Author and date of	Type of article	Name of the article
publication		
Patel – 2020	Review	Dental caries vaccine: are we there yet?
(36)		
Lemos <i>et al.</i> – 2019	Review	The Biology of Streptococcus mutans
(34)		
Peres – 2019	Review	Oral diseases: a global public health challenge
(37)		
Canouï <i>et al</i> . – 2019	Review	History and principles of vaccination
(3)		
Righolt <i>et al</i> – 2018	Review	Global-, Regional-, and Country-Level Economic Impacts of Dental Diseases in
(38)		2015
Vetter <i>et al.</i> – 2018	Review	Understanding modern-day vaccines: what you need to know
(4)		
Kilian – 2018	Review	The oral microbiome – friend or foe?
(2)		

Pitts <i>et al.</i> – 2017	Review	Dental caries
(1)		
Porter <i>et al.</i> – 2017	Review	DNA Vaccine Delivery and Improved Immunogenicity
(35)		
Costalonga <i>et al.</i> – 2014	Review	The oral microbiome and the immunobiology of periodontal disease and caries
(39)		
Rosier <i>et al.</i> – 2014	Review	Historical and contemporary hypotheses on the development of oral diseases:
(40)		Are we there yet?
Yan – 2013	Review	Salivary IgA enhancement strategy for development of a nasal-spray anti-
(41)		caries mucosal vaccine
Shanmugam <i>et al.</i> – 2013	Review	Dental caries vaccine - A possible option?
(42)		