

Facial analysis in patients with orofacial cleft using a 3D stereo-photogrammetric camera system:

A systematic integrative review

Indaiara Abi Rachid Moraes Caleffi Silveira

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Gandra, maio de 2024

Indaiara Abi Rachid Moraes Caleffi Silveira

Dissertação conducente ao Grau de Mestre em Medicina Dentária (Ciclo Integrado)

Facial analysis in patients with orofacial cleft using a 3D stereophotogrammetric camera system

Trabalho realizado sob a Orientação do mestre José Adriano Ferreira Gomes Da Costa.

DECLARAÇÃO DE INTEGRIDADE

Eu, Indaiara Abi Rachid Moraes Caleffi Silveira, declaro ter atuado com absoluta integridade na elaboração deste trabalho, confirmo que em todo o trabalho conducente à sua elaboração não recorri a qualquer forma de falsificação de resultados ou à prática de plágio (ato pelo qual um indivíduo, mesmo por omissão, assume a autoria do trabalho intelectual pertencente a outrem, na sua totalidade ou em partes dele). Mas declaro que todas as frases que retirei de trabalhos anteriores pertencentes a outros autores foram referenciadas ou redigidas com novas palavras, tendo neste caso colocado a citação da fonte bibliográfica.

Abstract

Facial analysis plays a crucial role on the treatment of orofacial clefts, offering valuable insights into facial morphology and symmetry. The emergence of three-dimensional stereophotogrammetric systems has revolutionized facial assessment, providing precise and objective measurements for diagnostic and therapeutic purposes.

This study aims to review the application of 3D stereophotogrammetric systems in facial analysis among patients with orofacial clefts and evaluate the utility of these systems in quantifying facial asymmetry, assessing treatment outcomes, and guiding surgical interventions in this population.

A systematic review of relevant literature was conducted to identify studies utilizing 3D stereophotogrammetric systems for facial analysis in patients with orofacial clefts. Articles were selected based on predetermined inclusion criteria, including study design, patient population, and outcome measures.

This review covered a total of 775 articles, followed by a deletion of duplicates articles. 49 of them were related to 3D stereophotogrammetric. Within which 19 provided the data sufficient for the purpose of this review.

The discussion section examines key findings such as clinical outcomes, abnormal appearance, surgical protocols to repair cleft, 3D documentation and measurements of facial asymmetry, facial anthropometric landmarks, comparison between 2D with 3D facial analyses, advantages, and limitations of three-dimensional stereo-photogrammetric camera, assessment of facial asymmetry measurements between cleft and noncleft and clinical relevance.

3D stereophotogrammetric camera systems represent a valuable tool for facial analysis in patients with orofacial clefts, enabling precise measurements, objective assessment of facial asymmetry, and insights into treatment outcomes, facilitating personalized care, optimizing aesthetic, and functional outcomes for affected individuals.

Keywords: oral cleft, facial asymmetry, three-dimensional imaging, 3D assessment, systematic review

Cor Abs	ntents stract	
Lis	t of Abbreviations	XI
Ind	lex of Figures and Tables	IX
1.	Introduction	1
2.	Objective	5
3.	Methodology	7
4.	Results	13
5.	Discussion	
5.1	Clinical outcomes of oral cleft	
5.2	Abnormal appearance in patients with clefts	34
5.3	Surgical protocols to repair the oral cleft	35
5.4	3D Documentation and Measurements of facial asymmetry	
5.5	Facial Anthropometric Landmarks	
5.6	Advantages of 3D Facial Analyses Over 2D Facial Analyses	
5.7	Advantages of Three-dimensional Stereo-photogrammetric Camera	40
5.8	3 Limitations of Three-dimensional Stereo-photogrammetric Camera	41
5.9	Assessment of Facial Asymmetry Measurements between Cleft and Noncleft	
5.1	0 Clinical Relevance	
6.	Conclusion	
7.	Bibliography	51

Index of Figures and Tables

- Figure 1 Flowchart of articles selection
- Table 1 Research strategies
- Table 2 Table of results

List of Abbreviations

- 2D two-dimensional
- 3D three-dimensional
- BCLP bilateral cleft lip and palate
- CBCT cone beam computerized tomography
- CL Cleft Lip
- CLP cleft lip and palate
- CT computerized tomography
- ICP isolate cleft palate
- NAN nonalveolar moulding
- UCL unilateral cleft lip
- UCLA unilateral cleft lip and alveolus
- UCLP unilateral cleft lip and palate

1. Introduction

Every year a significant percentage of children are born affected by some type of craniofacial defect. Cleft lip and/or palate (CLP) have the highest incidence among them. Most of the clefts are diagnosed at around twenty weeks of pregnancy through ultrasound scans. Unfortunately, a considerable part still is diagnosed after birth, and this incidence increases in developing countries. Research shows that genetic, nutrition and environmental factors contribute for the development of cleft (1). The incidence of CLP in newborns is 1:1000, in addition, women aged 35 years or over indicated the highest rate of cleft lip pregnancies (2). Cleft lip incidence is higher among males and cleft palate in females. Unilateral cleft lip rate is similar in all genders. And the incidence of incomplete cleft palate is higher than complete cleft palate (3). Commonly, CLP cognates with others congenital deformities, which congenital heart diseases being the most prevalent among them. Also, CLP associates with more than three hundred other syndromes (4). The treatment over the years of a child born with CLP include lip/palate repair surgeries, which brings to different areas of tissue scarring. Most of CLP repair results in lip and nose area asymmetry, especially in unilateral CLP and predispose the morphology of the area (5). Until now, studies in CLP did not achieve a consensus of the best tool to measure and report of the scar tissue and facial asymmetry. Clinical photographs analysed together with three-dimensional imaging or anthropometry are the techniques chosen to use for quantitative and qualitative studies in the area. It allows a psychological and measured analysis of scar tissue in patients with face asymmetry (6). The advance of technology promoted the facial three-dimensional photogrammetry as the highest standard of assessment and evaluation of scaring, allowing the comparison of facial landmarks between individuals born with CLP and non-born with CLP (7). This technique has provided a precise instrument for investigation of muscle motion, allowing an observation of morphology and residual scarring. In addition to analysing the functional symmetry of nasolabial area, indicates a deficiency of anatomical approximation (8). An asymmetric face commonly generates a self-aware image, specifically among adolescents. Additionally, social media contributes to a distorted self-perception and image, notably among young adults that are sensibilized about their self-appearances (9). Furthermore, photos modified digitally such as photography filters or software imaging editor create a potent source of unrealistic self-image (10). The increase of research in three

dimensional analyses of tissue scaring in CLP repair will allow to a better understanding and selection of treatment procedures and provide better outcomes in terms of facial symmetry (11). And doing so helping to increase the self- esteem and appearance acceptance among patients born with CLP.

2. Objective

The aim of this systematic review is to comprehensively evaluate and synthesize existing literature on 3D assessment techniques for quantifying facial asymmetry in individuals born with CLP and have undergone surgical repair due to cleft lip and palate (CLP), exhibiting scar tissue. By examining different 3D stereo-photogrammetric camera system, the review aims to elucidate their utility in accurately diagnosing, monitoring, and managing facial asymmetry in this specific population. Additionally, the review focuses on comparing facial landmarks between symmetrical and asymmetrical faces using three-dimensional imaging, including the nasolabial area. This comparative analysis aims to provide valuable insights into the preservation of facial aesthetics and improve treatment planning, potentially achieving more symmetrical results and enhancing the quality of life and self-esteem of individuals born with CLP.

3. Methodology

This study is a systematic review with scientific database searching on PubMed, ScienceDirect and Medline.

Inclusion criteria:

- Articles from year between 2013- 2023.
- Language: English.
- Articles related to Cleft palate lip population.
- Soft tissue analyses and three-dimensional image (stereophotogrammetry) analyses.
- Studies comparison between cleft and non-cleft patients
- Comparative studies

Exclusion criteria:

- Articles before 2013.
- Articles no relate to cleft lip palate population.
- Articles no related to facial three-dimensional image (stereophotogrammetry) analyses
- Articles in a different language.
- Systematic reviews and longitudinal studies

Research question:

Population: Children and adults diagnosed with oral clefts, including unilateral or bilateral cleft lip and palate.

Intervention: Three-dimensional (3D) assessment techniques for evaluating facial asymmetry in individuals with oral clefts, such as 3D facial imaging, stereophotogrammetry, and 3D morphometric analysis.

Comparison: Assess the efficacy of different 3D assessment methods for quantifying facial asymmetry in oral cleft patients. Compare various 3D imaging techniques, pre- and post-operative asymmetry severity, and their accuracy against conventional 2D assessments. Explore treatment effects on reducing asymmetry and improving facial aesthetics and function.

Outcome: The primary outcome is the degree of facial asymmetry quantified through 3D measurements, including differences in landmark positions, volumes, surface area, and overall facial morphology. Secondary outcomes may include treatment efficacy, patient satisfaction, and functional improvements related to speech, mastication, and psychosocial well-being.

Research Question: "What is the comparative effectiveness of various 3D assessment methods in quantifying and evaluating facial asymmetry in individuals with oral clefts, and how do these assessments contribute to the understanding and management of facial asymmetry in this population?"

Variables definition:

- 1. Age
- 2. facial asymmetry
- 3. lip repair
- 4. lip scarring
- 5. three-dimensional photogrammetry

Research strategies:

Three databases were used to perform the literature search PubMed, ScienceDirect and Medline. The search terms used were: "cleft", "anatomic landmarks", "photogrammetry", "video recording" and "3D imaging", combined with Boolean operator AND to reach the largest possible number of articles. The research expressions used were cleft [MeSH Terms] AND anatomic landmarks [MeSH Terms] AND 3D imaging [MeSH Terms]; cleft [MeSH Terms] AND photogrammetry [MeSH Terms] AND 3D imaging [MeSH Terms]; cleft [MeSH Terms] AND video recording [MeSH Terms] AND 3D imaging [MeSH Terms]. The inclusion criteria aggregated articles in English, published from 2013 to 2023, describing the use of 3D photogrammetry to analyses of facial asymmetry in patients affect with CLP. The exclusion criteria eliminated articles published before 2013, systematic reviews, longitudinal studies, articles no related to CLP or a different population on the study. And different method of 3D clinical examination (CBCT).

N° of	Key- words	N٥	of			
searches		articles				
Nº 1	cleft [MeSH Terms] AND anatomic landmarks [MeSH Terms] AND 3D	449				
	imaging [MeSH Terms]					
	• Medline n= 70					
	• PubMed n=7					
	• ScienceDirect - Research articles n=372					
Nº 2	cleft [MeSH Terms] AND photogrammetry [MeSH Terms] AND 3D imaging	168				
	[MeSH Terms]					
	• Medline n= 52					
	• PubMed n=64					
	• ScienceDirect – Research articles n= 52					
№ 3	cleft [MeSH Terms] AND video recording [MeSH Terms] AND 3D imaging	158				
	[MeSH Terms]					
	• Medline n= 6					
	• PubMed n=5					
	• ScienceDirect – Research articles n= 147					
Total: 775						

Articles selection:

The search strategy retrieved a total of 775 articles including 3 databases. On the selection of the articles the research collaboration platform Rayyan was used. 182 articles were excluded due duplicity. The studies were skimmed for pertinence by title and abstract. 386 articles were excluded for not being related to cleft. 168 articles were excluded for using a different clinical examination procedure. 49 articles were evaluated, studies that did not compared cleft with non-cleft population were also excluded. 30 articles were excluded after full content analysed. Therefore, 19 articles were included, analysed, and discussed on this systematic review.

Flowchart

4. Results

This review covered a total of 775 articles. Follow by a deletion of duplicates articles. The author selected 207 articles after studying the titles and abstracts, 49 of them were related to 3D stereophotogrammetric. From the remaining articles 30 were excluded after the full content m analysed. Therefore, exclusive 19 provided the data sufficient for the purpose of this review. From the selected articles, five (26.3%) evaluated the facial morphology, 8 (42,1%) analysed facial asymmetry and the remaining 6 (31,6%) assessed nasolabial area only. 26,3 % of the articles were captured during maximum smile, while the remaining 73.7% were captured in resting face.

Title/Author/year	Type of study	Objective	Sample	Equipment of capturing the 3D Images	Clinical relevance	Conclusion
 Bagante I. et al. 3D Assessment of Nasolabial Appearance in Patients with Complete Unilateral Cleft Lip and Palate (2018) 	Cross- sectional observational study.	The aim of this study was to assess the nasolabial appearance of patients with UCLP compared with a control group.	35 patients born between 1994 and 2004 with no syndromic complete UCLP were included. The mean age was 14.7 years old (range 10- 18). In the control group, 35 noncleft participants at 10 years old.	The study utilized the 3dMDfaceSystem; 3dMD LLC, Atlanta, GA, a 3D stereo- photogrammetric camera setup, to assess nasolabial appearance in patients with complete unilateral cleft lip and palate (UCLP). Specific anthropometric landmarks and distances were analysed using the 3dMD Vultus software.	Despite achieving acceptable symmetry post-surgery in the UCLP group, the nasolabial appearance differed significantly from the control group in most anthropometric distances. The 3D photographs provided a reliable, accurate, and non- invasive method for evaluating postoperative outcomes, suggesting its potential utility in routine clinical assessments of facial symmetry and aesthetic outcomes in cleft lip and palate patients.	Findings highlighted significant nasolabial symmetry disparities between the UCLP and control groups. Specifically, within the UCLP, the only difference appeared in alar wing length between the affected and unaffected sides. Despite this variation, the postoperative nasolabial symmetry in UCLP patients was deemed satisfactory at an early school age. The research endorsed 3D photogrammetry as an effective and non-invasive means to assess and track post-surgical nasolabial outcomes in UCLP patients.

2	Bunainhis Let al 3D	ໂເດຣະ-	To explore three-	The sample comprised	3D images were	Significant differences in	Significant differences in
۷.	acummatau af	sectional	dimensional (3D) facial	one bundred and three	captured using a pop-	3D landmark asymmetry	facial asymmetry were
	asymmetry of	ctudy	annensional (SD) racial	9 to 12 year old	invasivo 2D	were observed among all	observed across all cleft
	operated children	study	asymmetry unreferices	o- lu iz-year-ulu			ouserved across all ciert
	with oral clefts (2014)			children. 40 with			groups, with the OCLP and
			with oral clefts and to	unliateral cleft lip and	system (30MD, Atlanta,	ULLP and ULLA groups	ULLA groups snowing the
			compare the results	palate (ULLP); 23 with	GA, USA), comprising	showed the highest	most pronounced
			with a control group.	unilateral cleft lip and	two units with six	asymmetry, followed by	asymmetry, followed by
				alveolus (UCLA); 19	cameras each.	BCLP, while the CP group	BCLP, while the CP group
				with bilateral cleft lip	Landmark asymmetry	exhibited the least	exhibited the least. The
				and palate (BCLP); 21	was assessed using	asymmetry. Early	control group displayed
				with cleft palate (CP)	generalized Procrustes	intervention and	minimal asymmetry. These
				and 80 sex- and age-	analysis (GPA),	customized treatment	findings highlight distinct
				matched controls living	measuring distances in	strategies are crucial for	growth patterns and
				in the Northeast of	millimetres between	improving facial symmetry	aetiologies associated with
				England.	original and reflected	and overall well-being in	different cleft types. The
				5	landmarks.	individuals with oral	study emphasizes the value
						clefts.	of 3D imaging and shape
							analysis in assessing
							treatment outcomes and
							understanding the clinical
							Implications of oral clefts.

3	Buggighis Lat al 3D		The aim of this study	Subjects were 103	High-resolution 3D	Each cleft aroun (LICLP	Distinct facial differences
Э.	Encial Marahamata	cruss-		subjects were 105	facial scaps wasa		Distillet racial differences
		Sectional				UCLA, BCLF, ICF)	
	In Unildren with Ural	study	three-dimensional	years old with cleft lip	obtained using a 2-	displayed unique facial	group, nigniighting unique
	Clefts (2014)		(3D) facial	and palate — 40 with	megapixel 3D	characteristics. The	morphological
			morphological	unilateral cleft lip and	stereophotogrammetry	research underscores oral	characteristics. For the
			variation of children	palate, 23 with	system (V3.0, 3dMD,	clefts' substantial	UCLP and UCLA groups,
			with cleft lip and	unilateral cleft lip and	Atlanta, GA) with an	influence on facial	significant differences were
			palate compared to an	alveolus, 19 with	acquisition time of 2	asymmetry and	mainly in the nasolabial
			age- and sex matched	bilateral cleft lip and	milliseconds. For	morphology. It	region, with the UCLP
			control group.	palate, and 21 with	landmark	emphasizes the critical	group showing disparities
				isolated cleft palate	identification, 39	role of precise 3D analysis	in facial height and width.
				(ICP)—and 80 sex-	anthropometric	in clinical evaluations and	The BCLP group presented
				and age-matched	homologous landmarks	treatment planning for	wider nasal widths and
				control subjects.	were used, based	cleft patients, potentially	reduced facial heights.
				,	mainly on Farkas	enhancing surgical	indicating midface
					(1994), and recorded	outcomes and overall	retrusion. The ICP aroup
					using MorphAnalyser	patient care.	showed a smaller facial
					software version 2.07	F	form with less asymmetry.
							resembling controls when
							the cleft lin was absent
							and covaled a cotrograthic
							and revealed a recrogriating
							manuible.

4.	Patel Y. et al. An	Cross-	To compare dynamic	Thirteen treated adult	The Di4D system,	Despite surgical	Results revealed that adult
	innovative analysis of	sectional	nasolabial movement	participants with	developed by	interventions aiming to	UCLP patients exhibited
	nasolabial	study	between end-of-	unilateral cleft lip and	Dimensional Imaging	rectify facial asymmetry,	significant residual
	dynamics of surgically	,	treatment cleft and a	palate.	Ltd. in Glasgow.	residual differences	asymmetry, particularly in
	managed adult		matched non-cleft		Landmarks like the	persisted, impacting the	the horizontal movement of
	patients with		group in adult		inter-pupillary line and	patients' quality of life.	the cleft side mouth during
	unilateral cleft lip and		patients.		Frankfort plane guide	Various parameters,	smiling, which persisted
	palate				alignment.	including landmark	from infancy. This
	using 3D facial					displacement, path of	asymmetry was attributed
	motion capture					motion, and dynamic	to lip scarring and adhesion
	(2023)					asymmetry scores, were	resulting from primary
						employed to evaluate	surgical repair. Additionally,
						facial dynamics. The	nasal and lip periphery
						findings emphasize the	asymmetry increased
						significance of objective	during smiling, further
						measures in assessing	accentuated concerning the
						facial acummetry in LICLP	
						peed for further research	
						outcomes and improve	
						patient well-being.	
						P	

5.	Hallac R. et al.	Cross-	Objectively	Following Institutional	4D video	Participants with repaired	The Participants performed
	Dynamic facial	sectional	quantify the	Review Board (IRB)	stereophotogrammetry,	clefts and controls were	facial expressions, and
	asymmetry in	study	asymmetry of facial	approval, a total of 23	utilizing a system from	imaged while performing	results revealed greater
	patients with repaired	-	movements in	participants were	Dimensional Imaging	facial expressions. Results	dynamic facial asymmetry
	cleft lip using 4D		participants with	recruited to the study:	Ltd., Glasgow, U.K.	indicated greater	in CLP patients, particularly
	imaging (2017)		non-syndromic CLP	aged between 8 and 18	Operating at 50 frames	asymmetry in cleft	at the mid philtral ridge
			compared with	years, with a median	per second, the system	patients during smiling	landmark. This area is
			participants with no	age of 13 years. 11	captures real-time	and puckering,	dynamic during expressions
			craniofacial anomalies.	participants without	facial expressions,	particularly at the mid	and prone to scarring post-
				any	enabling a detailed	philtral ridge landmark.	repair. The study
				known craniofacial	assessment of	This area is susceptible to	underscores the
				diagnosis or previous	movement and	scarring after repair,	significance of evaluating
				lip trauma were	asymmetry.	emphasizing the study's	dynamic facial asymmetry
				recruited		importance in	post-surgery, informing
				as a control group.		understanding dynamic	potential refinements in
						facial asymmetry post-	surgical approaches, and
						surgery, potentially	emphasizing the need for
						Influencing future surgical	Improved aesthetic
						approaches and patient	outcome assessment
						care.	methods for CLP patients.

6.	Manyama M. et al.	Observational	Knowledge of	Comparing individuals	InSpeck 3D	Results revealed	Significant facial shape
	Facial morphometrics	CLOSS-	craniofacial shape	with unrepaired non-	MegaCapturor camera	significant facial shape	variations were observed
	of children with	sectional	among individuals	syndromic CL/P and	by Creaform Inc.,	differences between the	between the CL/P and
	NON-syndromic	study design.	with non-syndromic	normal individuals	Quebec, Canada. This	CL/P and control groups.	control groups, including
	orofacial clefts in		CL/P in African	without orofacial clefts.	stereophotogrammetric	Specifically, the CL/P	differences in interocular
	Tanzania (2014)		populations will		system captures 3D	group exhibited increased	distance, nasal and mouth
			provide further		facial surfaces in	nasal and mouth width,	width, and facial height.
			understanding of the		approximately 0.4	greater interorbital	Directional asymmetry due
			ethnic and phenotypic		seconds, boasting a	distance, and reduced	to cleft side was noted,
			variation present in		640×480 mm field of	facial height. Additionally,	likely influenced by the
			non-syndromic		view with high-fidelity	variations were noted	higher prevalence of left-
			orofacial clefts.		colour and texture	between unilateral and	sided clefts in the sample.
					rendering. The process	bilateral CL/P. This study	However, after mirroring
					involved meticulous	offers valuable insights	the data, no significant
					landmark	into the phenotypic	shape difference was found
					identification,	aspects of orofacial clefts	between left and right-
					demonstrating	in African children and	sided clefts. The CL/P
					observer precision	emphasizes the need for	group displayed increased
					within 0.338 mm.	early intervention and	nasal and mouth width,
						treatment. The study	increased interorbital
						suggests that despite	distance, and decreased
						variations in cleft	facial height compared to
						prevalence and types, the	controls. Interestingly, no
						facial shape variations	significant facial shape
						associated with LL/P in	difference was found
						African children align with	Detween Isolated LL and
						patterns observed in	combined CL7P groups.
						Caucasian populations.	1
							1
							1
							1
							1
							1
							1
							1
							1
							1

7.	Lee D., Tanikawal C.	Cross-	Examined the three-	Japanese patients with	"3-DMDcranial System"	Results revealed reduced	These movement
	and Yamashirom T.	sectional	dimensional (3D) facial	a repaired UCLP (Cleft	by 3-DMD, based in	upward and backward	restrictions were associated
	Impairment in facial	study	displacement while	group; n = 41, mean	Atlanta, GA, USA.	displacement of the upper	with increased
	expression generation	,	smiling in the Cleft	$age = 21.46 \pm 4.27$		lip and labial commissure	viscoelasticity of scar tissue
	in		and Control groups to	years old, 21 men and		during smiling in UCLP	and surrounding facial soft
	patients with repaired		determine whether the	20 women) and		patients. Additionally,	tissues, indicating stiffer
	unilateral cleft lip:		physical properties of	healthy adults with a		increased downward	scar characteristics than
	Effects of the physical		facial soft tissues	straight-type facial		displacement of the lower	normal skin. However, the
	properties of facial		differ between the	profile and normal		lip was observed,	study also identified that
	soft		Cleft and Control	occlusion (Control		correlating with elevated	asymmetric facial
	tissues (2021)		groups and to examine	group; n = 41, mean		viscoelasticity of scar	movements were not
			the relationship	age = 25.78 ± 3.35		tissue, and surrounding	closely related to skin
			between the physical	years old, 21 men and		facial soft tissues.	physical properties. The
			properties of facial	20 women) were		Notably, asymmetric facial	findings underscore the
			soft tissues on 3D	enrolled in the present		movement patterns were	complex interplay between
			facial displacement	study.		evident, with greater	scar tissue properties and
			while smiling.			lateral displacement on	facial movement
						the cleft side. However,	impairments in UCLP
						these asymmetries were	patients, suggesting that
						not intricately linked to	understanding these
						skin physical properties.	relationships could guide
						The findings suggest that	more targeted and effective
						while scar tissue	treatment strategies to
						influences specific facial	enhance functional and
						movements in UCLP	aesthetic outcomes for
						patients, other factors	Individuals with repaired
						contribute to facial	UCLP.
						asymmetry. This study	
						underscores the	
						Importance of	
						understanding scar tissue	
						properties in addressing	
						facial movement	
						Impairments in ULLP	
						patients for improved	
						creacinent outcomes.	

8.	Brons S. et al.	Cross-	To assess the	31 children with UCLP	3dMDcranial System.	The results indicated that	The nasolabial area at 3
	Influence of	sectional	influence of	and 50 controls at 3, 12	The images were	there was no significant	months of age, was the
	involuntary facial	study	involuntary facial	and 18 months of age.	assessed for quality	difference in variation	only area to observe
	expressions on	-	expressions on 3D	3	and neutral facial	between the UCLP and	significant difference in
	reproducibility of 3D		facial		expression using the	control groups for the	variation between the UCLP
	stereophotogrammetr		stereophotogrammetry		3dMDpatient V4.0	entire face. However, a	and control groups for the
	y in children with and		reproducibility in		software.	statistically significant	entire face, suggesting that
	without complete		children with and			difference was observed	this region is more
	unilateral		without unilateral cleft			in the nasolabial area at 3	susceptible to variations
	cleft lip and palate		lip, alveolus, and			months of age,	due to involuntary facial
	from 3 to 18 months		palate (UCLP) aged 3–			suggesting that this	expressions.
	of age (2018)		18 months.			region is more susceptible	
						to variations due to	
						Involuntary facial	
						expressions. Overall, the	
						importance of	
						facial expression during	
						3D image capture	
						especially in young	
						children with UCLP. to	
						ensure reproducibility and	
						accuracy in clinical	
						assessments and	
						treatment planning.	

Nasolabial shape and aesthetics in unilateral cleft lip and palate: an analysis of nasolabial shape using a mean 3D facial template (2019) Facial template (2019) Attact of the index steepan on cleft face, and to assess whether this differences is related to nasolabial aesthetics. Attact of the index steepan on cleft face, and to assess whether this differences is related to nasolabial aesthetics.	9.	Kuijpers M. et al.	Cross-	The aim of this study	A total of 60 patients	2-pod camera set-up	Results indicated that	While CLP patients
aesthetics in unikateral cleft lips and palate: an analysis of nasolabial shape in patients with a cleft compared with an average non-cleft face, and to assess thetter the scale to nasolabial aesthetics. In asolabial aesthetic action assess thetic patients action assess thetic patients action assess thetic patients are complexed of facial aesthetic patients are complexed of facial aesthetic patients are complexed with an asolabial aesthetic patients are complexed with an asolabial aesthetic patients are complexed with an asolabial aesthetic patients are complexed with analytic patients are address facial asymmetry and improve aesthetic audverse in the asolabial area than consistent approaches to address facial asymmetry and improve aesthetic address facial asymmetry and improve aesthetic and add		Nasolabial shape and	sectional	was to determine the	with a unilateral	for	more significant shape	displayed more shape
unilateral cleft lip and palate: an analysis of nasolabial shape using a mean 3D facial template (2019)		aesthetics in	study	amount of deviation in	orofacial cleft, born	stereophotogrammetric	differences were found in	differences in the
palate: an analysis of nasolabial shape facial template (2019) patients with a cleft compared with an average non-cleft face, and to assess whether this difference is related to nasolabial aesthetics.		unilateral cleft lip and	-	nasolabial shape in	between 1998 and	imaging (3dMDface	the nasolabial area of CLP	nasolabial area than
nasolabial shape using a mean 3D facial template (2019)compared with an average non-cleft face, and to assess difference is related to nasolabial aesthetics.the study. For comparison four average non-cleft faces were constructed from stereophotogrammetrici 60 boys.Atlanta, GA, USA The 3D images were processed using the 3dMDpatient v3.10.3 software and further analysed using Maxilim, mases of 1/41 girls and 60 boys.non-cleft individuals. However, these shape differences did not consistently correlate with asothetic ratings, except for the nasolaprofile. Academeter software (Medicim NV, Mechelen, Belgium).non-cleft individuals. However, these shape differences did not consistently correlate with asothetic ratings, except for the nasolaprofile. Academeter software (Medicim NV, Mechelen, Belgium).had minimal impact on aesthetic ratings, except for the nasolaprofile. Academeter software (Medicim NV, Mechelen, Belgium).non-cleft individuals. However, these shape differences did not software and further asothetic ratings, except for the nasolaprofile. Academeter suggests that aesthetic ratings except for study highlights the complexity of facial aesthetic perceptions. The suggests that aesthetic perceptions. The sudgress that aesthetic address facial asymmetry and improve aesthetic outcomes in CLP patients.had minimal impact on aesthetic aesthetic ratings, except for the nasolabial deviation address facial asymmetry and improve aesthetic outcomes in CLP patients.		palate: an analysis of		patients with a cleft	2004, were included in	System; 3dMD LLC,	patients compared to	controls, these variations
using a mean 3D facial template (2019)average non-cleft face, and to assess whether this difference is related to nasolabial aesthetics.comparison , four average non-cleft faces were constructed from sterophotogrammetric images of 141 girls and 60 boys.The 3D images were processed using the 3dMpatient v3.10.3 software (Medicim NV, Mechelen, Belgium).However, these shape differences did not consistently correlate with aesthetic ratings, except for the nasal profile. The study highlights the complexity of facial aesthetic perceptions. The suggesting that factors of the raise diverse facial asymmetry and improve aesthetic outcomes in CLP patients.However, these shape differences did not consistently correlate with aesthetic ratings, except for the nasal profile. The study highlights the complexity of facial aesthetic perceptions. The study suggests that aesthetic perceptions. The study determined by nasolabial aesthetic patients, suggesting that factors differences of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.aesthetic ratings except for the nasal profile. Aesthetic corres decreased with increasing cleft severity, but overall, shape distinct of aesthetic perceptions. The study suggests that aesthetic perceptions. The study determined by nasolabial hape differences.However, these shape differences divide of the nasal profile. Aesthetic corres decreased with increasing cleft severity, but overall, shape		nasolabial shape		compared with an	the study. For	Atlanta, GA, USA.	non-cleft individuals.	had minimal impact on
facial template (2019)face, and to assess whether this difference is related to faces were constructed images of 141 girls and 60 boys.roressed using the 3dMDpatient v3.10.3 software and further analysed using Maxilim software (Medicim NV, Mechelen, Belgium).differences did not consistently correlate with aesthetic ratings, except for the nasal profile. The study highlights the complexity of facial aesthetics.the nasal profile. Aesthetic sore decreased with increasing cells evenity, but overall, shape deviation sdid not software (Medicim NV, Mechelen, Belgium).differences did not consistently correlate with consistently correlate with aesthetic ratings, except for the nasal profile. The study highlights the complexity of facial aesthetic perceptions. The study suggests that aesthetic perceptions. The study suggests that aesthetic perceptions. The study suggests that aesthetic perceptions. The study suggest hat aesthetic perceptions. The study suggest hat aesthetic perceptions. The study suggest hat aesthetic perceptions. The individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.deviation all not software and turber aesthetic perceptions. The solution all deviation all differences.		using a mean 3D		average non-cleft	comparison	The 3D images were	However, these shape	aesthetic ratings except for
whether this difference is related to nasolabial aesthetics.faces were constructed from stereophotogrammetric images of 141 girls and 60 boys.3dMDatient v3.10.3 software and further analysed using Maxilim software (Medicim NV, Mechelen, Belgium).consistently correlate with aesthetic ratings, except for the nasal profile. The study highlights the complexity of facial aesthetics in CLP patients, suggesting that factors other than just nasolabial deviation might influence aesthetic perceptions. The findings emphasize the importance of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients,scores decreased with increasing cleft severity, but overall, shape deviations did not study suggests that aesthetic perceptions. The study suggests that aesthetic perceptions. The findings emphasize the importance of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients,scores decreased with increasing cleft severity, but overall, shape deviations did not study suggests that aesthetic perceptions. The findings emphasize the importance of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.		facial template (2019)		face, and to assess	, four average non-cleft	processed using the	differences did not	the nasal profile. Aesthetic
difference is related to nasolabial aesthetics.				whether this	faces were constructed	3dMDpatient v3.1.0.3	consistently correlate with	scores decreased with
nasolabial aesthetics. stereophotogrammetric images of 141 girls and 60 boys.				difference is related to	from	software and further	aesthetic ratings, except	increasing cleft severity,
images of 141 girls and 60 boys.				nasolabial aesthetics.	stereophotogrammetric	analysed using Maxilim	for the nasal profile. The	but overall, shape
60 boys. Mechelen, Belgium). complexity of facial aesthetics in CLP patients, suggesting that factors other than just nasolabial deviation might influence aesthetic perceptions. The study suggests that aesthetic piudgments in CLP patients are complex and not solely determined by nasolabial shape differences. facial asymmetry and improve aesthetic outcomes in CLP patients.					images of 141 girls and	software (Medicim NV,	study highlights the	deviations did not
aesthetics in CLP patients, suggesting that factors other than just nasolabial deviation might influence aesthetic perceptions. The study suggests that aesthetic judgments in CLP patients are complex and not solely determined by nasolabial shape differences. differences.					60 boys.	Mechelen, Belgium).	complexity of facial	significantly influence
suggesting that factors other than just nasolabial deviation might influence aesthetic perceptions. The findings emphasize the importance of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients. Study suggests that aesthetic judgments in CLP attents are complex and improve aesthetic outcomes in CLP patients.							aesthetics in CLP patients,	aesthetic perceptions. The
aesthetic judgments in CLP patients are complex and not solely determined by nasolabial shape differences.							suggesting that factors	study suggests that
deviation might influence aesthetic perceptions. The findings emphasize the importance of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.							other than just nasolabial	aesthetic judgments in LLP
aesthetic perceptions. The findings emphasize the importance of individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.							deviation might influence	patients are complex and
differences. individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.							aestnetic perceptions. The	not solely determined by
individualized treatment approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.							importance of	differences
approaches to address facial asymmetry and improve aesthetic outcomes in CLP patients.							importance or	differences.
facial asymmetry and improve aesthetic outcomes in CLP patients.								
improve aesthetic outcomes in CLP patients.							facial acummetry and	
outcomes in CLP patients.							improve postbotic	
							automos in CLP patients	
							outcomes in cer patients.	

10.	Matsumoto K. et al. Preliminary analysis of the three- dimensional morphology of the upper lip configuration at the completion of facial expressions in healthy Japanese young adults and patients with cleft lip (2016)	Cross- sectional study	To develop criteria for analysis of the upper lip configuration of patients with 3 cleft lips while they produce various facial expressions, by comparing the 4 three-dimensional (3D) facial morphology of healthy Japanese adults and patients with 5 a cleft lip.	Twenty healthy adult Japanese volunteers (10 men, 10 women, as reference 7 subjects), without any observed facial abnormalities, and eight patients (four men, four 8 women) with unilateral cleft lip and palate, who had undergone secondary lip and nose 9 repair in our department, were recruited for this study.	Artec MHT 3D scanners to capture detailed 3D facial images of participants, complemented using 3D-Rugle V software for subsequent analysis.	The study's 3D morphological analysis emphasizes the necessity of comprehensive evaluations during dynamic facial expressions to guide surgical improvements. Addressing these asymmetries is vital for achieving a harmonious blend of aesthetics and functionality, enhancing the overall quality of life for individuals with cleft lip.	It highlighted persistent challenges in achieving facial symmetry and balance, particularly during dynamic movements like smiling. The limited upper lip movement in cleft lip patients, due to scar tissue in the orbicularis oris muscle, revealed the intricacies of morphological reconstruction. Notable laterality differences were evident in cleft lip patients, indicating pronounced asymmetries compared to healthy individuals. Postoperative changes were observed, albeit with some inconsistencies across facial expressions.

11.	Kuijpers M. et al	Cross-	Assess facial	Standardized three-	"3dMD face™ System"	Notably, the nose was	Findings revealed that
	Regional facial	sectional	asymmetry in subjects	dimensional facial	by 3dMD LLC, based in	identified as the most	UCLP patients exhibited
	asymmetries in	study	with unilateral cleft lip	images of 58 patients	Atlanta, Georgia, USA.	asymmetric area across	significant facial
	unilateral		(UCL), unilateral cleft	(9 UCL, 21 UCLA, and	The acquired 3D	all CLP groups, followed	asymmetry, particularly in
	orofacial clefts (2015)		lip and alveolus	28 UCLP; age range:	images were processed	by the lips. In contrast,	the nasolabial area. In
			(UCLA), and unilateral	8.6–12.3 years) and 121	using the "3dMD	the chin was found to be	contrast, the control group
			cleft lip, alveolus, and	controls (age range 9–	patient™ Software	the most asymmetric area	showed the chin as the
			palate (UCLP), and to	12 years).	Platform" by 3dMD LLC	in the control group.	most asymmetrical area.
			evaluate which area of		to remove confounding	These findings highlight	The study also highlighted
			the face is most		regions like neck, ears,	the distinct patterns of	distinct asymmetry
			asymmetrical.		and hair. Further	asymmetry associated	patterns for each unilateral
					analysis, involving	with different unilateral	cleft type: the nose was the
					mirroring and distance	cleft types, suggesting	most asymmetric in UCLP
					map creation, was	that the anatomical	and unilateral cleft lip and
					performed using the	defect of the facial	alveolus (UCLA) patients.
					Maxilim® software by	skeleton plays a	This research provides
					Medicim NV, Mechelen,	significant role in facial	valuable insights into the
					Belgium.	asymmetry.	anatomical differences
						Understanding these	associated with cleft
						patterns can guide	deformities, emphasizing
						treatment approaches to	the need for tailored
						improve facial symmetry	treatment approaches for
						in CLP patients,	different cleft types.
						potentially enhancing	
						both aesthetic outcomes	
						and overall patient well-	
						being.	

12.	Harrison L., Hallac R. and Derderian C. Three-Dimensional Analysis of Bilateral Cleft Lip and Palate Nasal Deformity (2020)	Retrospective comparative cross- sectional study	This cross-sectional study utilizes 3- dimensional analysis to assess nasal morphology in patients with bilateral cleft lip and palate (BCLP) compared to controls across the timeline of cleft care.	One hundred and twelve patients with BCLP and an equal number of age and sex-matched control participants.	The research employed the 3dMD imaging system to capture three-dimensional facial photographs.	Traditional methods like anthropometric measurements and nasolabial casts faced limitations, including time consumption and lack of detail. Analysing 112 BCLP patients at various ages revealed persistent nasal deformities, such as widened nasal tip, shorter columella, and broader alar base compared to controls. These anomalies often remained even after surgical interventions, suggesting the complexities of achieving normalized nasal morphology in BCLP patients. The research underscores the utility of 3D photogrammetry for detailed and reproducible assessment of nasal morphology, contributing to better understanding	Results showed that BCLP patients exhibited less nasal projection and shorter columella length up to age 5. However, columella width was wider and alar width and base width were increased up to age 10. The nasolabial angle and nasal tip width remained significantly greater throughout the study period up to 15 years of age. The study highlights the utility of 3DP in tracking nasolabial morphology changes in BCLP patients over time, providing valuable insights for surgical interventions.
						detailed and reproducible assessment of nasal morphology, contributing to better understanding and management of facial asymmetry in BCLP patients.	

13.	Krimmel M. et al.	Cross-	The research aimed to	344 healthy children	3dMD Face System for	Using the 3dMD Face	Results indicated
	Three-Dimensional	sectional	identify standard	and 30 children with	capturing three-	System, significant	significant differences
	Assessment of Facial	study	anthropometric	cleft lip or cleft lip and	dimensional surface	differences were observed	primarily in the transverse
	Development		landmarks on the	alveolus were scanned	images. The resulting	in the transverse	direction, with notable
	in Children with		facial images and	three-dimensionally at	three-dimensional data	direction, particularly in	widening of nasal
	Unilateral Cleft Lip		superimpose them to	the age of 0 to 6 years.	sets, complete with	nasal landmarks,	landmarks and a broader
	With and		calculate growth		colour information,	indicating a broadening of	face in the nasal and oral
	Without Alveolar Cleft		curves for normal		were exported in	the nose and face in	areas in UCL and UCLA
	(2013)		facial development.		VRML/JPG format and	affected children. While	children. In the sagittal and
					imported into Autodesk	sagittal and vertical facial	vertical dimensions, these
					3ds Max software for	dimensions did not differ	children did not differ
					landmark placement	significantly from	significantly from
					and subsequent	unaffected children, there	unaffected children.
					analysis.	was a tendency towards	Surgical and orthodontic
						lengthening in some	treatments were found to
						regions. Despite surgical	restore vertical and sagittal
						and orthodontic	dimensions effectively.
						treatments improving	However, the transverse
						vertical and sagittal	dimension, particularly the
						dimensions in affected	nose, remained broader
						children, the transverse	post-treatment.
						dimension, notably the	
l						nose, remained broader.	
						the possistent facial	
						asymmetry in children with LICL and LICLA	
						suggesting a pood for	
						continued	
						interdisciplinary care to	
						address these challenges	
1						offectively	

14. Bell A. et al. Three- Dimensional Assessment of Facial Appearance Following Surgical Repair of Unilateral Cleft Lip and Palate (2012)	Cross- sectional study	Assess residual asymmetry in surgically repaired unilateral cleft lip (UCL) and unilateral cleft lip and palate (UCLP) patients and to compare this with	Fifty-one 10-year-old children with surgically managed UCLP and 44 children with UCL were compared with a control group of 68 ten-year-olds.	3D imaging system called Di3D for capturing facial images. Additionally, anatomic facial curves were extracted from the 3D models using this system	The findings revealed that children with clefts exhibited higher facial asymmetry scores compared to controls. Specifically, the upper lip and nose regions were the most asymmetric	Results indicated that surgically managed children with clefts exhibited higher facial asymmetry scores than controls, with the UCLP group showing more pronounced asymmetry. Specifically the upper lin
					The study highlights the persistence of facial dysmorphology even after surgical correction of cleft lip and palate, emphasizing the need for continuous evaluation and potential further interventions to improve facial symmetry and overall appearance in these patients	asymmetric area, followed by the nasal complex. These findings underscored the challenges in achieving complete facial symmetry through surgical interventions, suggesting a need for meticulous primary repair to optimize long-term facial aesthetics and function.

15.	Othman S. and Koay N. Three-dimensional facial analysis of Chinese children with repaired unilateral cleft lip and palate (2016)	Cross- sectional study	Analysed the facial features of Chinese children with repaired unilateral cleft lip and palate (UCLP) and compared them with a normal control group using a three- dimensional (3D) stereophotogrammetry camera.	20 Chinese children with repaired UCLP and 40 unaffected Chinese children aged 7 to 12 years old.	VECTRA-M5 360, featuring a five-pod configuration with ten lenses to capture high- resolution, photorealistic images.	The research found several clinically significant differences between the UCLP group and the control group. Notably, children with UCLP exhibited wider and flatter noses, broader alar base root width, and wider left nostril floor width. Additionally, they displayed shorter upper lip length and thinner upper vermilion. The findings emphasize the importance of comprehensive facial	Results indicated that the UCLP group displayed notable differences in the nasolabial region, including a wider and flatter nose, wider nostril floor, shorter upper lip length, and thinner upper vermilion compared to the control group. However, the intercanthal width, though wider in the UCLP group, was statistically insignificant. The study underscores the importance of using 3D imaging to evaluate the
			dimensional (3D) stereophotogrammetry camera.			base root width, and wider left nostril floor width. Additionally, they displayed shorter upper	compared to the control group. However, the intercanthal width, though wider in the UCLP group
						lip length and thinner upper vermilion. The findings emphasize the	was statistically insignificant. The study underscores the
						importance of comprehensive facial evaluations post-repair of UCLP_Upderstanding	importance of using 3D imaging to evaluate the outcomes of cleft lip and
						these asymmetries is crucial for refining surgical techniques, optimizing aesthetic	understand the facial differences in CLP patients.
						outcomes, and enhancing psychosocial well-being in affected individuals.	

16	Brons S. et al. Three-	Cross-	This study aimed to	Thirty infants with a	The 3dMDfacial System	Using	Results showed significant
	dimensional facial	sectional	compare the three-	non-syndromic	with a 2-pod	stereophotogrammetry	morphological differences
	development of	study	dimensional (3D) facial	complete unilateral	configuration was	and a generic mesh	between UCLP patients and
	children with		morphology of infants	cleft lip, alveolus, and	employed for image	superimposition	controls, especially in the
	unilateral cleft lip and		born with unilateral	palate participated in	acquisition.	technique, high-quality	upper lip, nose, and chin
	palate		cleft lip and palate	the study. Three-		3D facial images were	regions. Surgical
	during the first year		(UCLP) with an age-	dimensional images		collected. The findings	interventions partially
	of life in comparison		matched normative 3D	were acquired at 3, 6,		highlighted significant	restored facial symmetry,
	with normative		average face before	9, and 12 months of		morphological differences	but some asymmetry
	average faces (2019)		and after primary	age. All subjects were		between UCLP patients	persisted, particularly in the
			closure of the lip and	treated according to		and controls, particularly	nasal region. These results
			soft palate.	the primary surgical		in the upper lip, nose, and	underscore the importance
				protocol consisting of		chin regions. UCLP	of early intervention and
				surgical closure of the		subjects showed retrusive	continuous monitoring to
				lip and the soft palate		facial dimensions	optimize facial aesthetics
				at 6 months of age.		compared to controls,	and function in infants with
						with notable asymmetry	ULLP.
						In the nasal and labial	
						regions. Surgical	
						interventions, including lip	
						and soft palate closures,	
						partially restored facial	
						symmetry, but some	
						asymmetry persisted,	
						especially in the nasal	
						region.	

17.	Verzé L., Bianchi F.,	Cross-	The aim of this study	Twelve patients	The study utilized a	Despite surgical	Results showed that while
	and Ramieri G. Three-	sectional	was to analyse the	fulfilled inclusion	head and face colour	interventions, adult UCLP	both groups exhibited
	dimensional laser	study	differences in facial	criteria for the	3D scanner (3030RGB;	patients exhibited	improved facial symmetry
	scanner evaluation of		soft tissue changes,	study and were divided	Cyberware Inc,	residual asymmetries in	post-surgery, UCLP
	facial soft tissue		despite the same	in 2 groups 6 patients	Monterey, CA, USA).	the upper lip and nasal tip	patients displayed residual
	changes after LeFort I		extent of upper jaw	born with CLP and 6	The acquired 3D data	projection compared to	asymmetries in the upper
	advancement and		forward movement,	patients born without	were then transferred	the control group. Both	lip and nasal tip projection
	rhinoplasty surgery:		between patients with	CLP.	to a graphics	groups showed	compared to the control
	patients with cleft lip		unilateral cleft lip and		workstation for viewing	improvements in facial	group. Challenges in
	and palate vs patients		palate (u CLP) and		and further processing	symmetry post-surgery,	achieving perfect facial
	with noncleft		those without, after		using the Cyberware	but the control group	symmetry in UCLP patients
	maxillary retrognathic		LeFort I osteotomy		Echo software	displayed a more	were attributed to inherent
	dysplasia (control		and secondary		(Cyberware Inc,	pronounced nasal tip	tissue deformities, previous
	group) (2014)		rhinoplasty.		Monterey, CA, USA).	projection. The study	surgical interventions, and
						highlights the challenges	scar tissue. The findings
						in achieving perfect facial	emphasize the need for
						symmetry in UCLP	further advancements in
						patients, emphasizing the	surgical techniques and
						need for further technical	technologies to effectively
						advancements in	address these residual
						orthognathic surgery to	deformities and enhance
						address these residual	the aesthetic outcomes in
						deformities effectively.	patients with oral clefts.

18.	Othman S. et al.	Cross-	The aims of this study	15 Malay patients who	The study utilized the	Significant differences	Notably, the nose and
	Three-dimensional	sectional	were to assess the	had UCLP repaired, and	VECTRA-3D dual	were found in seven out	orolabial regions,
	quantitative	study	quantitative values of	100 Malay control	module system by	of eleven craniofacial	particularly the nasal and
	evaluation of facial		measurements using	patients aged 18–25	Canfield Scientific Inc.,	proportion indices	upper lip indices, showed
	morphology in adults		proportion indices in	years were analysed.	Fairfield, NJ, USA.	between the two groups.	the most pronounced
	with unilateral cleft		the craniofacial region		Following image	Specifically, the nasal and	differences. The study
	lip and palate, and		in patients with		capture, the 3D Mirror	orolabial regions,	established a threshold of 5
	patients without		repaired, non-		Software was	including the nose (nasal	mm as clinically relevant
	clefts (2014)		syndromic, complete		employed for image	and nasal tip) and upper	for facial asymmetry in
			unilateral cleft lip and		display and analysis.	lip, showed the most	UCLP patients. These
			palate (UCLP).			pronounced	findings suggest that UCLP
						discrepancies. A	patients exhibit distinct
						difference of 5 mm or	facial asymmetries, mainly
						more was considered	in the nasolabial region,
						clinically relevant.	which could be attributed
						Patients with UCLP	to surgical interventions
						displayed larger facial	and growth patterns.
						dimensions, particularly in	
						the nose and upper lip	
						areas. The findings	
						emphasize the	
						importance of accurate	
						assessment and potential	
						corrective measures for	
						facial asymmetry in	
						individuals with UCLP,	
						aiding in surgical planning	
						and treatment evaluation.	

19.	Wong K. et al. Using three-dimensional average facial meshes to determine nasolabial soft tissue deformity in adult UCLP patients (2018)	Cross- sectional study	The purpose of this study is to determine the site and severity of the residual nasolabial soft tissue deformity between adult unilateral cleft lip and palate (UCLP) patients and a non-cleft reference group, prior to orthognathic surgery.	Sixteen adults male UCLP patients, who all received primary lip and palate surgery compared to a previous published Hong Kong non-cleft reference group of 48 male adults	The study utilized the Di3D stereophotogrammetry system (Di4D, Dimensional Imaging Ltd, Hillington, Glasgow, UK).	The primary outcome measure was the difference in alar base width between the two groups, with secondary measures including conventional linear and angular measurements and facial asymmetry scores. The study utilized advanced imaging techniques like stereophotogrammetry to capture detailed facial topography. Results indicated that UCLP patients exhibited significant facial asymmetry, with wider noses, reduced lip and philtrum lengths, and other distinct deformities compared to the reference group. The findings are clinically relevant as they offer a comprehensive, 3D-based approach to diagnosing and planning surgical corrections for UCLP patients, surpassing the	The study shows narrower nostril floor width, wider nasal base width, longer right columella length, shorter cutaneous lip height, and various other differences. The UCLP group also demonstrated increased facial asymmetry compared to the reference group. Distance colour maps revealed substantial soft tissue deficiencies in the nasal and upper lip regions of the UCLP patients, which were asymmetrically skewed towards the unaffected side. These findings provide valuable insights for clinicians to consider when planning orthognathic surgeries for UCLP patients, highlighting areas requiring correction and potential challenges in surgical prediction planning.
						approach to diagnosing and planning surgical corrections for UCLP patients, surpassing the limitations of conventional 2D methods.	

5. Discussion

One of the most impacting sequelae of a treatment of oral cleft is the facial asymmetry. Affecting the self-esteem and quality of life of patients. The task of assess the location and extension of the asymmetry is normally given to the orthodontist or surgeon treating the patient. The feasibility of a 3D non-invasive imaging system is clinically relevant, especially when could provide an enhanced guide for nasolabial reconstruction, allowing similar facial symmetry to a non-cleft patient (12)

5.1 Clinical outcomes of oral cleft

The clinical outcomes and management of oral clefts, encompassing cleft lip, cleft palate, and their combinations, pose significant challenges in both surgical and aesthetic realms. This is primarily due to the intricate nature of the deformities and the subsequent wide impact they have on affected individuals. Several studies have investigated the use of advanced three-dimensional (3D) imaging techniques, such as 3D stereophotogrammetry and 4D video stereophotogrammetry, to assess the anatomical, functional, and aesthetic aspects of orofacial clefts (12–15).

The research by Bagante et al. (2018), emphasizes in evaluating the nasolabial appearance of patients with unilateral cleft lip and palate (UCLP) (13). Notably, significant differences in nasal symmetry were observed between cleft and noncleft sides, underscoring the intricate challenges in achieving aesthetic symmetry in these patients. Similarly, Bugaighis et al. (2014), utilized 3D stereophotogrammetry to identify significant facial asymmetry among different cleft groups, highlighting the distinct facial shape differences resulting from various types of oral clefts and their respective surgical repairs (12,16). Kuijpers et al. (2021), provided valuable insights into the relationship between nasolabial shape and aesthetics in CLP patients, highlighting that while nasolabial shape differences were evident, they did not always correlate with aesthetic perceptions (17). This suggests that other factors, possibly psychological and social, may influence aesthetic ratings in these patients.

Furthermore, dynamic assessments using advanced 3D facial motion capture technology, as seen in Patel et al. (2023), revealed less movement and increased asymmetry in UCLP patients during smiling, underscoring the persistent functional and aesthetic challenges even after corrective surgeries (15). This is further supported by Hallac et al. (2017), who employed 4D video stereophotogrammetry to demonstrate significant dynamic asymmetry in patients with repaired cleft lips during voluntary facial expressions (14).

In addition to functional challenges such as speech difficulties, feeding difficulties, dental issues, and hearing problems, as well as psychological and social impacts like social stigma, bullying, and self-esteem issues (18). Furthermore, the long-term repercussions of cleft-related facial deformities on patient well-being persist as an active area of research, emphasizing the need for continued monitoring and personalized treatment strategies tailored to the unique facial characteristics of affected individuals (19,20).

5.2 Abnormal appearance in patients with clefts

The appearance of patients with clefts, particularly those with complete unilateral cleft lip and palate (UCLP), presents a complex challenge due to the inherent facial asymmetry and morphological differences associated with these congenital craniofacial defects.

The study by Bagante et al. (2018), highlighted a significant difference in alar wing length between the cleft and noncleft sides and other anthropometric distances when compared to a control group. Such findings underscore the necessity for specialized assessment tools to identify and address the specific asymmetries and morphological differences in cleft patients accurately (13).

Bugaighis et al. (2014) further explored the 3D facial asymmetry in children with various oral clefts, noting distinct facial asymmetry patterns across different cleft types (12,16). Furthermore, unilateral cleft lip and palate (UCLP) and unilateral cleft lip and alveolus (UCLA) groups exhibited the greatest asymmetry, while the bilateral cleft lip and palate (BCLP) group showed less asymmetry but more than the cleft palate (CP) group.

In addition, Patel et al. (2023) and Hallac et al. (2017) respectively utilized advanced 3D imaging techniques to assess facial movements and dynamics in UCLP and cleft lip with

or without palate (CLP) patients. The results revealed significant differences in movement, symmetry, and dynamic asymmetry between cleft groups and controls, highlighting the need for better objective measures to assess and improve treatment outcomes, especially in adult UCLP patients. (14,15).

Scar tissue properties and their influence on facial movement and appearance were examined by Lee et al. (2021). The study found that UCLP patients exhibited reduced upward and backward displacement of the upper lip and labial commissure, increased downward displacement of the lower lip, and increased asymmetric lateral displacement due to increased viscoelasticity of scar and surrounding facial tissues (21).

Furthermore, the study by Kuijpers et al. (2015), revealed that although deviations in nasolabial shape did not significantly impact overall aesthetic scores in CLP patients, factors beyond nasolabial shape deviation may influence aesthetic ratings. This highlights the complexity of addressing both functional and aesthetic consequences of cleft lip and palate conditions, requiring a multidisciplinary approach involving surgeons, orthodontists, speech therapists, and psychologists (22).

Nevertheless, the studies by Manyama et al. (2014), Matsumoto et al. (2016), and Harrison et al. (2021), emphasized the importance of understanding unique facial shape variations, the impact of cleft lip conditions on facial morphology and function, and the utility of 3D imaging in assessing nasal morphology in cleft patients, respectively (19,23,24).

5.3 Surgical protocols to repair the oral cleft

The management of orofacial clefts, encompassing cleft lip (CL), cleft palate (CP), and their combinations, is a multidisciplinary endeavour involving surgical, orthodontic, and speech therapies. This comprehensive approach aims not only to correct the anatomical defects but also to restore function and aesthetics, thereby improving the quality of life for affected individuals. The surgical protocols and techniques have evolved over the years, with advancements in technology providing more accurate and detailed assessments of surgical outcomes.

Several studies have emphasized the importance of specific surgical techniques in achieving favourable outcomes. For instance, primary lip repair using the Millard rotationadvancement technique has been demonstrated to be effective, with subsequent secondary rhinoplasty addressing nasal deformities (13). Similarly, the McComb technique for primary nose correction (16) and modified von Langenbeck procedure for soft palate closure (17) are established methods that contribute to comprehensive cleft care.

However, despite advancements in surgical techniques, studies have highlighted the challenges in achieving perfect symmetry and function. Bugaighis et al. (2014), found significant facial asymmetry among different cleft groups, with the UCLP and UCLA groups displaying the greatest asymmetry (12). Dynamic assessments revealed pronounced asymmetry during facial expressions, suggesting that surgical interventions may not always achieve optimal functional outcomes (14). Further corroborated these findings, demonstrating residual dynamic asymmetry in UCLP patient post-treatment (15).

The advent of 3D stereophotogrammetry has revolutionized the evaluation of surgical outcomes in orofacial cleft patients. These advanced imaging techniques allow for detailed morphological analyses, capturing even subtle changes in facial symmetry and dimensions (16,23). Such detailed assessments are crucial for refining surgical techniques and postoperative care strategies. For instance, the study by Hallac et al. (2017), emphasized the importance of dynamic 4D imaging in identifying areas for potential improvement in surgical techniques (14).

The timing of surgical interventions is another critical aspect of cleft management. Early lip closure, typically performed between two to four months of age, aims to correct the orofacial congenital condition, and lays the foundation for subsequent treatments (21). Palatoplasty and alveolar bone grafting are performed at specific developmental stages to ensure optimal outcomes (25). However, the study by Manyama et al. (2014), highlighted the need for early interventions and proper surgical planning, especially in African populations where surgical correction often occurs late in childhood (19).

Orthodontic treatments, such as the use of orthodontic appliances according to Hotz and Tennison-Randall techniques, play a crucial role in restoring vertical and sagittal

dimensions of the face. These interventions, combined with surgical corrections, aim to achieve harmonious facial aesthetics and function (26).

Despite significant advancements in surgical techniques and imaging technologies, challenges remain in achieving optimal outcomes for orofacial cleft patients. Future research should focus on refining surgical protocols, exploring innovative techniques like LeFort I osteotomy and mandibular setback, and integrating multidisciplinary approaches involving surgery, orthodontics, and speech therapy (27).

5.4 3D Documentation and Measurements of facial asymmetry

The advent of three-dimensional (3D) stereophotogrammetric imaging has revolutionized the assessment of facial asymmetry, particularly in patients with orofacial clefts. These advanced imaging techniques offer non-invasive, qualitative, and quantitative methods to evaluate nasolabial appearance and facial morphology with unprecedented precision and reliability (13).

Several studies have employed 3D stereophotogrammetric imaging to assess nasolabial appearance in patients with unilateral cleft lip and palate (UCLP) and other types of oral clefts (12,17). For instance, Bagante et al. (2018), utilized 3D photographs taken with the 3dMDfaceSystem (3dMD LLC, Atlanta, GA), to accurately quantify nasal symmetry, demonstrating the method's suitability for routine evaluation after surgery (13). Similarly, Kuijpers et al. (2021), applied a quantitative evaluation method to measure shape differences and aesthetic ratings objectively, further highlighting the utility of 3D stereophotogrammetry in assessing surgical outcomes (17).

Facial asymmetry is a prominent feature in patients with oral clefts, as evidenced by Bugaighis et al. (2014) study, which revealed significant differences in facial asymmetry among different cleft groups. These findings suggest distinct growth patterns and etiological differences among various cleft groups and emphasize the potential of 3D imaging in aiding treatment planning and evaluating surgical outcomes (12). Together with dynamic assessment using 3D facial motion capture has further expanded our understanding of facial asymmetry in UCLP patients. Despite surgical intervention, residual dynamic deficiencies persist in UCLP patients, particularly affecting the corner of

the mouth on the cleft side. Such findings underscore the importance of comprehensive assessment methods in evaluating surgical outcomes and planning targeted treatments to enhance functional and aesthetic outcomes (14,15). While 3D stereophotogrammetry offers numerous advantages, including fast image capture, high resolution, and safety, challenges remain in standardizing surgical techniques and minimizing changes in position and facial expression during image acquisition (16,18). Proper training, rigorous image selection, and complex image processing techniques are essential to ensure the accuracy and reliability of 3D facial imaging, particularly in young children and diverse populations (19,25).

5.5 Facial Anthropometric Landmarks

The evaluation of facial anthropometric landmarks plays a crucial role in understanding the intricate facial morphologies associated with orofacial clefts. These landmarks serve as essential reference points for assessing facial symmetry, asymmetry, and the impact of surgical interventions on the nasolabial appearance of cleft lip and palate (CLP) patients.

In a study by Bagante et al. (2018), detailed attention was given to landmarks such as the nasal tip, alar points, and height of nares. The study captured 25 landmarks and 18 distances manually on each image. Significant differences in the nasolabial appearance between UCLP and control groups were identified, with particular emphasis on alar wing length. This highlights the importance of specific landmarks in capturing and quantifying post-surgical outcomes, aiding in the development of enhanced surgical techniques for improved facial symmetry (13).

Bugaighis et al. (2014) conducted multiple studies focusing on 3D facial asymmetry in CLP patients, capturing 39 landmarks on each face. Also, they highlighted the significance of shape analysis in detecting differences in the growth patterns and aetiology of different cleft types. These studies underscore the importance of a comprehensive set of landmarks in understanding the multifaceted impact of clefts on facial morphology (12,16)

Transitioning to dynamic assessments, Patel et al. (2023) concentrated on the dynamic symmetry of the nasolabial complex during a maximum smile. Landmark displacement, path of motion, and dynamic asymmetry scores were primary outcome measures,

assessed using MATLAB software. Their study highlighted the corner of the mouth on the cleft side as a significant landmark exhibiting greater asymmetry in UCLP patients, emphasizing the need for precise landmark tracking in evaluating dynamic facial expressions post-surgery (15). Together with Hallac et al. (2017), assessed facial movements during smiling and puckering, tracking thirteen anatomical landmarks using DI4D view software (Dimensional Imaging Ltd., Hillington Park, Glasgow, U.K). Their findings underscored the importance of dynamic asymmetry assessment, with the mid philtral ridge identified as a crucial landmark prone to muscle and skin scarring post-repair (14).

Several studies delved into specific anatomical landmarks crucial for assessing 3D soft tissue changes post-surgery. Brons, Darroudi, et al. (2019)utilized landmarks such as the exocanthion, endocanthion, tip of the nose, and cheilion to create boundary planes of the nasolabial region, integral for the analysis and mapping of 3D facial images (18). Matsumoto et al. (2016)emphasized the lip commissure and orbicularis oris muscle as critical landmarks for assessing morphological changes during facial expressions in patients with cleft lip (23).

5.6 Advantages of 3D Facial Analyses Over 2D Facial Analyses

Several studies have highlighted the superiority of 3D facial analyses in capturing detailed and accurate facial morphology compared to conventional 2D methods. Bagante et al. (2018) and Bugaighis et al. (2014) emphasized that 3D evaluation provides more precise measurement of anthropometric distances and landmarks, offering comprehensive data on facial symmetry and deformities post-surgery (13,16). The 3D approach captures the depth, volume, and spatial relationships between facial features, thus providing a more detailed and accurate representation of facial structures (23,26). Moreover, 3D imaging reduces errors from facial expression changes due to its quick acquisition time (16).

While 2D methods often rely on direct physical measurements, moire contourography, and laser scan imaging, 3D facial analyses utilize advanced techniques such as 3D scanners, providing higher resolution and more precise results (17,28). The geometrical accuracy of 3D analyses has been reported to be better than 0.5 mm (26). Also, 3D analyses offer

enhanced reproducibility and accuracy, with minimal measurement errors observed even in healthy individuals (20).

In addition, 3D facial analyses allow for precise superimposition and alignment of facial images taken during different facial expression production, enabling detailed analysis of morphological changes between expressions (14,23, 15,29). Also, 3D facial analyses provide enhanced reproducibility and accuracy, reducing the potential for unnatural movement and improving accuracy compared to marker-dependent 2D methods (16,30).

Despite the advantages of 3D facial analyses, 2D methods have their merits, such as simplicity and quickness. However, they are often more subjective and rely heavily on the experience of the judges (30). 2D analyses might focus on specific landmarks or regions, potentially missing broader facial asymmetries, or deformities (29).

5.7 Advantages of Three-dimensional Stereo-photogrammetric Camera

Three-dimensional (3D) stereo-photogrammetric cameras have revolutionized the field of craniofacial analysis, offering unparalleled advantages over traditional imaging methods.

One of the standout features of 3D stereo-photogrammetry is its remarkable precision. The 3dMDfaceSystem; 3dMD LLC, Atlanta, GA for instance, offers high geometrical accuracy with an average error validation of merely 0.5 mm (16). This precision surpasses many conventional methods, making it an invaluable tool for detailed anthropometric measurements and shape analyses (12,17). Moreover, the technology captures a continuous point cloud of the face, facilitating meticulous landmark placement and accurate coordinate extraction.

Unlike traditional methods that may expose subjects to radiation or require invasive procedures, 3D stereo-photogrammetry is non-invasive (14). This non-invasive nature ensures patient comfort, particularly in young children, enhancing cooperation during the imaging process. Additionally, the absence of physical contact or discomfort associated with the procedure improves patient experience and minimizes potential risks (25).

In addition, 3D stereo-photogrammetry allows for comprehensive 3D assessments of facial structures, capturing depth, volume, and spatial relationships with high precision (23). Its versatility enables the capture and analysis of multiple facial expressions, providing insights into dynamic facial asymmetry and movements (15).

The technology facilitates easy data storage, making it suitable for longitudinal analysis and comparison over time (16). Its compatibility with specialized software allows for detailed visualization, precise measurement calculations, and rigorous validation processes. This compatibility ensures consistency, facilitates standardized analysis of facial structures, and offers long-term monitoring capabilities (16).

Furthermore, 3D stereo-photogrammetry offers objective data analysis, minimizing bias and ensuring standardized and reliable assessment of facial symmetry and asymmetry (14). The system's reproducibility allows for reliable comparisons across different facial expressions and individuals, overcoming the subjectivity associated with manual assessment methods (20).

5.8 Limitations of Three-dimensional Stereo-photogrammetric Camera

Three-dimensional (3D) stereo-photogrammetric cameras have emerged as powerful tools in craniofacial research, particularly in assessing facial asymmetry and morphology in patients with cleft lip and palate (CLP). Despite their numerous advantages, including reliability, accuracy, and non-invasiveness, these systems are not devoid of limitations.

One of the primary concerns with 3D stereo-photogrammetric cameras is the potential for errors during image reconstruction. Dark regions, such as nostrils, pose challenges due to their intricate anatomy, making accurate capture difficult (13). Similarly, movements during image acquisition can introduce inaccuracies, affecting the precision of measurements (16). The reliance on software-based triangulation and mesh modelling may also introduce computational errors, potentially compromising the reliability of the results (16).

Moreover, the cost of the equipment remains a significant barrier, limiting its accessibility for widespread use, especially in resource-constrained settings (13). This high cost is

compounded by the need for specialized software and trained personnel to operate and interpret the 3D images accurately (20).

Furthermore, maintaining a neutral facial expression during image capture is crucial for reproducibility. However, young children and infants, particularly those with conditions like unilateral cleft lip and palate (UCLP), often struggle to cooperate, leading to variations in facial expressions that can introduce errors (25). Several studies have highlighted limitations related to sample size and population diversity. For instance, studies focusing on specific ethnic, or age groups may not be representative of broader populations, limiting the generalizability of the findings (21,28). Moreover, some studies have small sample sizes, potentially impacting the statistical power and reliability of the results (27).

In addition, the ethical constraints, such as obtaining informed consent from parents or guardians, especially for repetitive image captures, can pose challenges in recruiting larger sample sizes (18). Additionally, the complex nature of 3D data requires specialized expertise for accurate interpretation and analysis, making it potentially time-consuming and challenging (29).

5.9 Assessment of Facial Asymmetry Measurements between Cleft and Noncleft

The study by Bagante et al. (2018), focused on the nasolabial appearance in patients with complete unilateral cleft lip and palate (UCLP) using 3D stereo-photogrammetry. They found a significant difference between the cleft and noncleft sides only in alar wing length in the UCLP group. In contrast, the control group did not show significant differences between the left and right sides (13).

Bugaighis et al. (2014), examined 3D facial asymmetry in children with oral clefts compared to a control group. They identified significant differences in all cleft groups compared to the controls. Specifically, the UCLP and UCLA groups displayed the greatest asymmetry, followed by the BCLP group. The CP group showed the least asymmetry among the cleft groups (12).

In another study by Bugaighis et al. (2104), distinct facial morphological differences were identified in each cleft group compared to controls. The UCLP and UCLA groups exhibited

significant asymmetries mainly in the nasolabial region, with the UCLP group showing broader intercanthal width and shorter upper lips. The BCLP group presented wider nasal widths and reduced maxillary prominence angles, indicating midface retrusion (16).

Patel et al. (2023), investigated nasolabial dynamics in adult patients with UCLP using 3D facial motion capture. They found increased asymmetry in UCLP patients, especially in the horizontal movement of the cleft-side mouth corner. The path of motion and shape of the lips and nose also showed significant differences between the groups (15).

Lee et al. (2021), explored facial displacement differences and found that patients with UCLP exhibited greater viscoelasticity in scar and surrounding facial areas compared to healthy adults. They also revealed a significant association between the physical properties of the scar tissue and facial displacement during smiling (21).

In a study focusing on involuntary facial expressions, Brons, Darroudi et al. (2019), found that the mean variation in 3D images was slightly higher in UCLP subjects compared to control subjects, suggesting caution in interpreting 3D facial imaging data, especially in young children (18).

Kuijpers et al. (2015), examined nasolabial shape and aesthetics in patients with unilateral cleft lip and palate (CLP) using 3D stereophotogrammetric imaging. They found that the severity of the cleft corresponded with lower aesthetic ratings, but shape differences between cleft and noncleft faces did not significantly affect aesthetic ratings, except for the nasal profile (22).

Matsumoto et al. (2016) conducted a detailed 3D morphological assessment comparing facial asymmetry between healthy subjects and cleft lip patients, both pre- and post-surgery. They found distinct facial asymmetries in cleft lip patients, especially in laterality across facial sections, and highlighted the critical role of the orbicularis oris muscle in upper lip structure and function (23).

5.10 Clinical Relevance

The array of studies presented offers comprehensive insights into the complexities surrounding facial asymmetry in individuals with cleft lip and palate (CLP). 3D stereophotogrammetry emerges as a crucial tool in evaluating and monitoring postoperative outcomes in cleft lip and palate patients (13). Its non-invasive nature coupled with its accuracy in capturing specific anthropometric landmarks makes it an asset in routine clinical practice. Moreover, advanced techniques like 4D imaging and facial motion capture technology provide dynamic assessments that offer a more nuanced understanding of facial asymmetry (14,15).

Additionally, studies consistently highlight significant differences in facial morphology between cleft and non-cleft individuals. These differences encompass various regions, including the nasolabial area, intercanthal width, nasal widths, and midface retrusion, underscoring the profound impact of oral clefts on facial symmetry and morphology. Such insights are crucial for devising targeted treatment strategies and improving surgical outcomes (12,16,19).

Despite advancements in surgical techniques, achieving optimal facial symmetry remains a challenge. Scar tissue, muscle restrictions, and anatomical defects often contribute to persistent asymmetry and functional limitations, necessitating ongoing research and refinements in surgical approaches (23,24).

Furthermore, facial asymmetry not only affects aesthetic appearance but also impacts functional movement and psychosocial well-being (20,21). Residual asymmetry postsurgery can lead to reduced facial expressions, affecting emotional expressions like smiling, which can significantly impact an individual's quality of life. Studies highlight potential variations in facial characteristics among different populations (19,30). Understanding these population-specific nuances is vital for tailoring treatment approaches and ensuring culturally sensitive care.

Facial aesthetics play a crucial role in shaping patients' self-perception and societal interactions (17). The complexity of facial aesthetics in CLP patients underscores the

importance of individualized treatment approaches and ongoing evaluations to address nasolabial deviation and other aesthetic concerns effectively.

6. Conclusion

The extensive body of research highlights the significant impact of facial asymmetry on both aesthetic and functional outcomes in patients with cleft lip and palate (CLP) following surgery. Advanced 3D stereophotogrammetry has proven invaluable for objectively assessing and quantifying these asymmetries across different cleft types. However, despite surgical interventions aiming to restore facial symmetry and enhance patient well-being, challenges like scar tissue formation, altered tissue properties, and inherent deformities often lead to residual asymmetry.

These complexities emphasize the importance of individualized treatment strategies, early intervention, and ongoing monitoring to effectively address the multifaceted nature of facial asymmetry. The careful identification and analysis of facial anthropometric landmarks are essential for understanding the complex facial morphologies associated with CLP. Advanced 3D stereophotogrammetry techniques, combined with accurate landmark tracking, offer valuable insights into nasolabial appearance, facial symmetry, and dynamic facial asymmetry, guiding surgical interventions and evaluating treatment outcomes effectively.

While 2D facial analyses have been crucial in previous studies, 3D facial analyses provide a more comprehensive, detailed, and accurate assessment of facial morphology. Threedimensional stereo-photogrammetric cameras have transformed facial analysis by offering precision, non-invasiveness, versatility, and compatibility with advanced software. These tools have become essential in both clinical research and routine clinical practice, enabling clinicians and researchers to evaluate facial structures, understand facial deformities, assess surgical outcomes, and monitor patient progress reliably.

However, despite the benefits of 3D imaging techniques, they come with their own set of challenges. Issues like improving image reconstruction accuracy, reducing costs, enhancing patient cooperation, and ensuring broader population representation must be addressed to fully leverage the potential of this technology in craniofacial research and clinical applications. Additionally, while facial asymmetry is more pronounced in individuals with clefts compared to those without, and varies depending on the type of

cleft, understanding these variations is essential for developing targeted interventions and improving treatment outcomes.

Overall, the discussed studies collectively highlight the multifaceted nature of facial asymmetry in individuals with CLP and stress the significance of advanced imaging techniques, individualized treatment strategies, and interdisciplinary care. Ongoing research, interdisciplinary collaboration, and personalized treatment planning are essential to tackle the challenges associated with facial asymmetry comprehensively. Despite significant progress in assessment techniques, surgical interventions, and comprehensive care approaches, there are still considerable challenges in achieving optimal functional, aesthetic, and psychosocial outcomes for affected individuals. Therefore, continued research and technological advancements are vital for enhancing surgical outcomes, improving patient quality of life, and advancing holistic care for individuals with CLP and other craniofacial deformities.

7. Bibliography

- 1. Alois CI, Ruotolo RA. An overview of cleft lip and palate. JAAPA. 2020; 33(12):17–20.
- 2. Worley ML, Patel KG, Kilpatrick LA. Cleft Lip and Palate. Vol. 45, Clinics in Perinatology. W.B. Saunders; 2018; p. 661–78.
- Inchara R, Santhanam A, Subhashree R. Incidence of cleft lip and cleft palate-an institutional based retrospective study. International Journal of Research in Pharmaceutical Sciences. 2020; 11.
- 4. Vyas T, Gupta P, Kumar S, Gupta R, Gupta T, Singh H. Cleft of lip and palate: A review. J Family Med Prim Care. 2020; 9(6):2621.
- Meyer-Marcotty P, Stellzig-Eisenhauer A. Dentofacial Self-Perception and Social Perception of Adults with Unilateral Cleft Lip and Palate. Journal of Orofacial Orthopaedics. 2009; 70(3):224–36.
- Shaye D, Liu CC, Tollefson TT. Cleft Lip and Palate. An Evidence-Based Review. Vol.
 23, Facial Plastic Surgery Clinics of North America. W.B. Saunders; 2015. p. 357–72.
- Neuhaus MT, Zimmerer R, Zeller AN, Jehn P, Gellrich NC, Tavassol F. Influence of Unilateral Cleft Lip Configuration on Long-Term Facial Averageness: A New Three-Dimensional Analysis Approach. Facial Plast Surg Aesthet Med. 2021; 23(2):132–9.
- Gattani S, Ju X, Gillgrass T, Bell A, Ayoub A. An Innovative Assessment of the Dynamics of Facial Movements in Surgically Managed Unilateral Cleft Lip and Palate Using 4D Imaging. Cleft Palate-Craniofacial Journal. 2020; 57(9):1125–33.
- Newton JT, Minhas G. Exposure to 'ideal' facial images reduces facial satisfaction: an experimental study. Community Dent Oral Epidemiol. 2005; 33:410–8.
- Tiggemann M. Digital modification and body image on social media: Disclaimer labels, captions, hashtags, and comments. Vol. 41, Body Image. Elsevier Ltd; 2022. p. 172–80.
- Stauber I, Vairaktaris E, Holst A, Schuster M, Hirschfelder U, Neukam FW, et al. Three-dimensional Analysis of Facial Symmetry in Cleft Lip and Palate Patients Using Optical Surface Data. Journal of Orofacial Orthopaedics. 2008; 69(4):268–82.
- 12. Bugaighis I, Mattick CR, Tiddeman B, Hobson R. 3D asymmetry of operated children with oral clefts. Orthod Craniofac Res. 2014; 17(1):27–37.

- Bagante I, Zepa I, Akota I. 3d assessment of nasolabial appearance in patients with complete unilateral cleft lip and palate. Cleft Palate-Craniofacial Journal. 2018; 55(2):220-5.
- Hallac RR, Feng J, Kane AA, Seaward JR. Dynamic facial asymmetry in patients with repaired cleft lip using 4D imaging (video stereophotogrammetry). Journal of Cranio-Maxillofacial Surgery. 2017; 45(1):8–12.
- Patel Y, Sharp I, Enocson L, Khambay BS. An innovative analysis of nasolabial dynamics of surgically managed adult patients with unilateral cleft lip and palate using 3D facial motion capture. Journal of Plastic, Reconstructive and Aesthetic Surgery. 2023; 85:287–98.
- 16. Bugaighis I, Mattick CR, Tiddeman B, Hobson R. 3D facial morphometry in children with oral clefts. Cleft Palate-Craniofacial Journal. 2014; 51(4):452–61.
- Kuijpers MAR, Maal TJJ, Meulstee JW, Carels CEL, Bronkhorst EM, Bergé SJ, et al. Nasolabial shape and aesthetics in unilateral cleft lip and palate: an analysis of nasolabial shape using a mean 3D facial template. Int J Oral Maxillofac Surg. 2021; 50(2):267–72.
- Brons S, Darroudi A, Nada R, Bronkhorst EM, Vreeken R, Berge SJ, et al. Influence of involuntary facial expressions on reproducibility of 3D stereophotogrammetry in children with and without complete unilateral cleft lip and palate from 3 to 18 months of age. Clin Oral Investig. 2019; 23(3):1041–50.
- Manyama M, Larson JR, Liberton DK, Rolian C, Smith FJ, Kimwaga E, et al. Facial morphometrics of children with NON-syndromic orofacial clefts in Tanzania. BMC Oral Health. 2014; 14(1).
- 20. Krimmel M, Kluba S, Breidt M, Bacher M, Müller-Hagedorn S, Dietz K, et al. Threedimensional assessment of facial development in children with unilateral cleft lip with and without alveolar cleft. Journal of Craniofacial Surgery. 2013; 24(1):313–6.
- 21. Lee D, Tanikawa C, Yamashiro T. Impairment in facial expression generation in patients with repaired unilateral cleft lip: Effects of the physical properties of facial soft tissues. PLoS One. 2021; 16.
- 22. Kuijpers MA, Desmedt DJ, Nada RM, Bergé SJ, Fudalej PS, Maal TJ. Regional facial asymmetries in unilateral orofacial clefts. Eur J Orthod. 2015; 37(6):636–42.

- 23. Matsumoto K, Nozoe E, Okawachi T, Ishihata K, Nishinara K, Nakamura N. Preliminary Analysis of the 3-Dimensional Morphology of the Upper Lip Configuration at the Completion of Facial Expressions in Healthy Japanese Young Adults and Patients with Cleft Lip. In: Journal of Oral and Maxillofacial Surgery. W.B. Saunders; 2016. p. 1834–46.
- Harrison LM, Hallac RR, Derderian CA. Three-Dimensional Analysis of Bilateral Cleft
 Lip and Palate Nasal Deformity. Cleft Palate-Craniofacial Journal. 2021; 58(1):105–
 13.
- 25. Brons S, Meulstee JW, Loonen TGJ, Nada RM, Kuijpers MAR, Bronkhorst EM, et al. Three-dimensional facial development of children with unilateral cleft lip and palate during the first year of life in comparison with normative average faces. PeerJ. 2019; 2019(7).
- 26. Bell A, Lo TWR, Brown D, Bowman AW, Siebert JP, Simmons DR, et al. Threedimensional assessment of facial appearance following surgical repair of unilateral cleft lip and palate. Cleft Palate-Craniofacial Journal. 2014; 51(4):462–71.
- 27. Verzé L, Bianchi FA, Ramieri G. Three-dimensional laser scanner evaluation of facial soft tissue changes after LeFort I advancement and rhinoplasty surgery: Patients with cleft lip and palate vs patients with no clefted maxillary retrognathic dysplasia (control group). Oral Surg Oral Med Oral Pathol Oral Radiol. 2014; 117(4):416–23.
- 28. Othman SA, Aidil Koay NA. Three-dimensional facial analysis of Chinese children with repaired unilateral cleft lip and palate. Sci Rep. 2016; 6.
- Wong KWF, Keeling A, Achal K, Khambay B. Using three-dimensional average facial meshes to determine nasolabial soft tissue deformity in adult UCLP patients. Surgeon. 2019; 17(1):19–27.
- Othman SA, Ahmad R, Asi SM, Ismail NH, Rahman ZAA. Three-dimensional quantitative evaluation of facial morphology in adults with unilateral cleft lip and palate, and patients without clefts. British Journal of Oral and Maxillofacial Surgery. 2014; 52(3):208–13.

