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Abstract 

ABSTRACT 

Transthyretin (TTR) is synthesized by the liver and choroid plexus of the brain that 

contribute to the plasma and cerebrospinal fluid pool of the protein. When mutated, TTR is 

associated to familial amyloid polyneuropathy (FAP), a neurodegenerative disease 

characterized by TTR deposition in the form of aggregates and extracellular deposits, 

particularly in the peripheral nervous system (PNS). TTR deposition in the PNS leads to 

fatal neuronal loss. In this study, we aimed to search the biological functions for TTR in 

the nerve (that could explain its preferential deposition in the PNS, when mutated) and the 

biological consequences of the lack of TTR in TTR KO mice. Under physiological 

conditions, we found no morphometric differences in the sciatic nerve of WT and TTR KO 

littermates that could explain the sensorimotor impairment of TTR KOs. However, after 

injury, we show that TTR KO mice present a slower recovery as detected by a decreased 

number of myelinated and unmyelinated fibers. This slower regeneration was reversed 

after delivery and local expression of TTR in the nerve. Associated to the lack of TTR, 

TTR KO mice present a higher expression of the rate limiting enzyme in neuropeptide 

amidation, peptidylglycine α-amidating monooxygenase (PAM) and, consequently, higher 

levels of the major amidated neuropeptide – neuropeptide Y (NPY). As NPY has been 

related to bone remodeling and neuroproliferation, we investigated the bone and 

neuroproliferative phenotype of TTR KO mice. This strain showed an augmented bone 

mass related to a higher NPY and PAM expression during osteoblastic differentiation and 

in various bone cells. Regarding neuroproliferation and, despite it has been shown to be 

induced by NPY, no differences were found between TTR KO and WT mice. 

In conclusion, we determined that TTR enhances nerve regeneration and that lack of 

TTR is associated with increased bone mass as a consequence of increased NPY levels and 

PAM expression. 
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Resumo 

RESUMO 

A Transtirretina (TTR) é sintetizada pelo fígado e plexo coróide do cérebro que 

constituem as fontes de proteína no plasma e líquido cefalorraquidiano. Quando mutada, a 

TTR está associada à polineuropatia amiloidótica familiar (FAP), uma doença 

neurodegenerativa caracterizada pela deposição de TTR sob a forma de agregados e 

depósitos extracelulares, particularmente no sistema nervoso periférico (SNP). A 

deposição de TTR no SNP conduz a perda neuronal. Neste estudo, tivemos como objectivo 

identificar funções biológicas para a TTR no nervo periférico (o que pode explicar a sua 

deposição preferencial no SNP, quando mutada) e as consequências biológicas da ausência 

de TTR nos ratinhos TTR KO. Em condições fisiológicas, não verificámos diferenças 

morfométricas entre os nervos ciáticos dos ratinhos WT e TTR KO que pudesse explicar o 

défice sensório-motor dos ratinhos TTR KO. No entanto, demonstrámos que, após lesão, 

os ratinhos TTR KO recuperam mais lentamente como foi detectado por uma diminuição 

do número de fibras mielinizadas e não-mielinizadas. Esta regeneração lenta foi revertida 

após a administração e expressão local de TTR no nervo. Associado à ausência de TTR, os 

ratinhos TTR KO apresentam uma maior expressão de peptidylglycine α-amidating 

monooxygenase (PAM), a enzima que desempenha o passo limitante da amidação de 

neuropéptidos e, consequentemente, maiores níveis do maior neuropéptido amidado – 

neuropéptido Y (NPY). Como o NPY tem vindo a ser relacionado com a remodelação 

óssea e com a neuroproliferação, procurámos estudar o fenótipo ósseo e neuroproliferativo 

dos ratinhos TTR KO. Nesta estirpe verificou-se um aumento da massa óssea relacionado 

com o aumento da expressão de NPY e PAM durante a diferenciação osteoblástica e nos 

vários tipos de células ósseas. Relativamente à neuroproliferação, e apesar de ter sido 

demonstrado que é induzida pelo NPY, não se verificaram diferenças entre os ratinhos 

TTR KO e WT. 

Em conclusão, verificou-se que a TTR promove a regeneração do nervo e que a 

ausência de TTR está associada com o aumento da massa óssea como consequência do 

aumento dos níveis de NPY e da expressão de PAM. 
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General Introduction 

TRANSTHYRETIN 

Transthyretin (TTR), which was first discovered in 1942 (Kabat et al., 1942) is a 

tetrameric protein composed by four identical subunits (Blake et al., 1971) with 54,980 

Daltons (total molecular weight) and of 127 aminoacids (Kanda et al., 1974). 

TTR is synthesized mainly by the liver and choroid plexus epithelial cells being 

secreted into the blood (Gitlin and Gitlin, 1975) and into the cerebrospinal fluid (CSF) 

(Aleshire et al., 1983), respectively. Additionally, other studies have demonstrated 

minor TTR synthesis by other organs such as the pancreas (Kato et al., 1985), stomach, 

heart, muscle, spleen (Soprano et al., 1985) and meninges (Blay et al., 1993). 

TTR has a dual physiological role as a transporter (trans) of thyroid hormones 

(thy) and retinol-binding protein (retin) in the blood (figure 1). 

 

 
Figure 1 – Synthesis, circulation and uptake of transthyretin. (a) Transthyretin (TTR) (red circles) is 
synthesized by the choroid plexus of the brain and by the liver. The mechanisms underlying delivery and 
uptake of TTR within and out of the brain are not known. (b) The tetramer circulates in plasma bound to 
retinol-binding protein (RBP; green circle) thereby providing a transport function for retinol; a small 
proportion of TTR binds high-density lipoproteins (HDLs; yellow bar). (c) TTR is degraded in the kidney 
and liver. In the kidney tubules, TTR is taken up by megalin; in the liver, an yet unidentified receptor that 
binds receptor-associated protein (RAP) is responsible for TTR uptake (adapted from Expert Reviews in 
Molecular Medicine © 2002 Cambridge University Press). 

 

Thyroid hormones, such as thyroxine (T4) are important regulators of metabolism 

and normal growth. Only 15% of circulating T4 in the human bloodstream is transported 

by TTR since this hormone has a higher affinity for thyroxine-binding globulin (Loun 

and Hage, 1992). In contrast, TTR is the major T4 carrier both in the human and rodent 

CSF (about 80%). 
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General Introduction 

The two structurally identical binding sites for T4 are located between two of the 

four subunits in the TTR tetramer (Blake et al., 1978; Blake et al., 1974), (figure 2A). 

 

   A B

Figure 2 – Transthyretin as a hormone and vitamin transporter. (A) Monoclinic form of human 
transthyretin complexed with T4 at the center in black (Protein Data Bank 1ICT); (B) TTR-RBP-retinol 
complex (TTR is shown in the center in blue and green, RBP in red and yellow/green in the upper left and 
lower right side, and retinol in black) (Protein Data Bank 1ICT). 

 

Retinol (synthesized and secreted by the liver) is transported specifically bound to 

retinol binding protein (RBP) and TTR (Kanai et al., 1968). The complex TTR-RBP-

retinol prevents glomerular filtration of both RBP (21,000 Da) and retinol. Though TTR 

tetramer has four RBP binding sites (van Jaarsveld et al., 1973), only one molecule 

binds to TTR under physiological conditions (figure 2B) due to physiological 

limitations, namely the fact that TTR is 2-3 fold more concentrated than circulating 

RBP in the plasma (van Bennekum et al., 2001). Retinoic acid also binds to TTR (Smith 

et al., 1994) but with a lower affinity. 

 

Familial amyloid polyneuropathy (FAP) 

Familial amyloid polyneuropathy (FAP) is the main neurodegenerative disease 

associated to mutated TTR and it was first described in 1952 by Corino de Andrade 

(Andrade, 1952). From the over 100 amyloidogenic TTR variants described, the most 

common causing FAP is Val30Met (Saraiva et al., 1984). TTR Val30Met causes 

systemic extracellular deposits of mutated TTR and amyloid fibrils particularly in the 
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General Introduction 

peripheral nervous system (PNS) (Coimbra and Andrade, 1971a; Coimbra and Andrade, 

1971b),  with the exception of the brain and liver parenchyma. The extracellular 

amyloid deposits can be found diffusely in the PNS, involving nerve trunks, plexuses, 

sensory and autonomic ganglia (Hanyu et al., 1989; Said et al., 1984; Sobue et al., 

1990). Following TTR deposition, axonal degeneration occurs, starting in the 

unmyelinated fibers and myelinated fibers of low diameter, and ultimately leading to 

neuronal loss at ganglionic sites (Sousa and Saraiva, 2003). FAP sensory impairment-

related symptoms occur before middle age and patients die 10 to 20 years after the 

onset. Although liver transplantation is currently used to abolish mutant TTR 

production and prevent disease progression, some of the neurological lesions persist 

irreversible (Furtado et al., 1999) 

The mechanism through wich TTR aggregates and forms amyloid fibrils is still 

obscure though, several studies point towards conformational changes that disrupt the 

tetramer into non-native monomers as the beginning of amyloid fibril formation 

(Bonifacio et al., 1996; Quintas et al., 1999) (figure 3). 

 

 
Figure 3 – Mechanism for amyloid fibril formation by TTR in physiological conditions (Quintas et 
al., 2001). 

 

The fact that mutated TTR deposits preferentially in the nerve, suggests a function 

of this protein in this structure. 
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General Introduction 

TTR knockout mice 

In 1993, TTR knockout (TTR KO) mice were generated (Episkopou et al., 1993) 

to investigate the physiological role of TTR during embryonic development and in adult 

animals, specially the role of its ligands, thyroxine (T4) and retinol. In general terms, 

this strain revealed to be fertile, having a normal life span and displaying no obvious 

phenotypic abnormalities postnatally (Episkopou et al., 1993). As expected, plasma 

from TTR KO mice had decreased levels of both T4 and T3 (Episkopou et al., 1993). In 

terms of thyroid hormones tissue content, no significant differences in T4 levels were 

found in TTR KO mice when compared to WT mice (Palha et al., 1997). Probably 

underlying their euthyroid status, free T4 was 50% increased in the serum of TTR KO 

mice (Palha, 2002). As such, the absence of TTR does not seem to affect thyroid 

hormone function. In the case of retinol, TTR KO mice were expected to have a vitamin 

A deficiency. Though their retinol plasma levels were below the detection level, mice 

lacking TTR did not show any symptoms of vitamin A deficiency (Episkopou et al., 

1993). In agreement with the lack of symptoms of vitamin A deficiency, the total retinol 

levels in tissues were not significantly different from WT mice (Wei et al., 1995). 

Similarly to thyroid hormones, in the case of vitamin A, the above findings suggest that 

TTR KO mice present no major defects related to retinol deficiency. 

 

TTR and the biology of the nervous system 

Since the initial characterization, TTR KO mice revealed to be one of the most 

valuable tools to link the biology of TTR with that of the Central Nervous System 

(CNS) and PNS. The idea that this protein might be linked to the nervous system 

derived from the fact that, when mutated, it originates a neuropathy and also because, 

under physiological conditions, it is highly abundant in the CSF. 

The first observation linking TTR to the physiology of the nervous system was the 

fact that TTR KO mice present a decreased anxiety-like behavior and an increased 

motor activity when compared to WT animals (Sousa et al., 2004a). Later, using the 

SHIRPA analysis (Rogers et al., 1997), it was shown that this phenotype was reversed 

with age. Thus, at 12 months of age, TTR KO mice had a decreased motor activity 

probably due to an age-dependent increase in motor discoordination (Fleming et al., 

2007), (figure 4). At the sensory level, TTR KO mice had an increased latency in 
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General Introduction 

response to a nociceptive noxious thermal stimulus as determined using the hot plate 

test (Fleming et al., 2007), further reinforcing their sensorimotor impairment. 

 

 
Figure 4 – TTR KO mice present motor discoordination (limb clasping) (Fleming et al., 2007). 

 

At the molecular level, increased limbic levels of norepinephrine were shown in 

TTR KOs (Sousa et al., 2004a) suggesting that TTR involvement in behavior occurred 

through modulation of the noradrenergic system. In fact, the pathophysiology of 

depression has been traditionally focused on the serotoninergic and noradrenergic 

systems. However, growing evidence indicates that neuropeptides, in particular 

neuropeptide Y (NPY), may also play a role in affective diseases, such as in depression, 

as it has been shown that central NPY administration displays antidepressant-like 

activity (Heilig, 2004). In this respect, Nunes et al. reported that TTR KO have 

increased NPY, an anxyolytic neuropeptide. 

The above data strongly suggest that TTR plays a role in the biology of the 

nervous system, probably not only in physiological conditions but also during the 

course of disease/injury. 

In agreement with a function for TTR in the CNS, recent studies have implicated 

TTR in behavior and CNS disorders. Altered TTR levels in the CSF have been linked to 

neuronal dysfunctions, such as Alzheimer’s disease, in which TTR in the CSF is 

negatively correlated with the degree of dementia (Serot et al., 1997). Although TTR 

has been linked to CNS pathology, the link to nerve regeneration remained to be 

explored. 
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TTR KO mice as a model for increased NPY levels 

Evidence for a role of TTR in the physiology of the nervous system, namely in 

behavior, came from the observation that TTR knockout (KO) mice are less depressed 

than control mice (Sousa et al., 2004a) together with the fact that they display increased 

limbic levels of norepinephrine (Nunes et al., 2006). 

PNS microarray analysis and immunohistochemistry revealed an up-regulation 

(24-fold) of peptidylglycine α-amidating monooxygenase (PAM) in dorsal root 

ganglion (DRG) of TTR KO compared to WT (Nunes et al., 2006). NPY is the major 

neuropeptide present in the mammalian brain (Pedrazzini et al., 2003) and requires C-

terminal α-amidation by PAM for its activation (figure 5). Although NPY expression is 

not altered, TTR KO mice showed higher levels of this neuropeptide both in CNS and 

PNS. 

 

 
Figure 5 – Schematic representation of PAM involvement in regulating neuropeptide amidation. 
PAM sequentially catalyzes the conversion of glycine-extended peptides into C-terminal amidated 
peptides (from Nunes AF, PhD Thesis, 2007) 

 

These findings suggest that lack of TTR interferes in the nervous system 

homeostasis and suggest that TTR may play a role in events related to 

neurodegeneration/neuroprotection in PNS diseases. 

 

Peripheral nerve regeneration 

Central Nervous System regeneration is conditioned by the glial scar (formed by 

astrocytes) and an inhibitory environment that blocks axonal growth after injury. In 
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contrast, the Peripheral Nervous System has a higher regenerative capacity which might 

be related to the rapid clearance of myelin debris by PNS macrophages and Schwann 

cells (George and Griffin, 1994; Schafer et al., 1996) providing a favorable environment 

for axonal growth (figure 6). 

 

 
Figure 6 – Peripheral nerve regeneration. After injury, axonal integrity is disrupted and degeneration 
occurs. To promote axonal growth, previously myelinating Schwann cells de-differentiate, start to 
proliferate and producing growth factors (available at www.bio2.rwth-aachen.de/research/RERENER.htm). 

 

It is accepted that the ability of peripheral axons to regenerate following injury 

relies on alterations of gene transcription and protein synthesis, although, the identity of 

the molecules and the mechanisms by which signals inform the cell body that the axon 

has been injured are still obscure. 

Wallerian degeneration is a degenerative process that occurs in the distal stump of 

injured nerves. In the course of Wallerian degeneration, Schwann cells dedifferentiate, 

downregulate myelin protein synthesis in response to axonal loss (LeBlanc and Poduslo, 

1990) and begin to catabolize myelin and later engulf axon fragments (figure 7).  

After injury, neuronal survival is also promoted by the recruitment of 

macrophages that infiltrate the lesion site to phagocyte myelin debris and neurotrophins 

that are retrogadely transported after production at the target tissue. 

 

8 
 



General Introduction 

9 
 

   A B

Figure 7 – Mouse sciatic nerve. (A) Regenerating mouse sciatic nerve stained with toluidine blue. 
Myelinated fibers (arrow), macrophages (open arrow) and a Schwann cell (arrowhead) at a 40x 
magnification. (B) Electron microscopy evidences the presence of unmyelinated fibers (arrow) together with 
myelinated fibers (open arrow) and a Schwann cell (arrowhead) surrounding a myelinated fiber (x 7000). 

 

The injured nerve is able to regrow from the proximal stump to the distal end. 

This growth is supported by the transport of molecules that travel along the cell body to 

the tip of the axon (anterograde transport), followed by the transport of injury signals 

from the lesion site to the cell body (retrograde transport). The signals that reach the cell 

body modulate axonal elongation since injured neurons need to express proteins (such 

as tubulin) so that axonal growth takes place. 

Following degeneration and axonal regeneration, remyelination needs to proceed 

and occurs in a similar process to the normal process of myelination during 

development. 
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Objectives 

OBJECTIVES 

 

The aim of the present work was to search the function of TTR in the peripheral 

nerve and bone biology. 

 

To achieve this objective we proposed to: 

 

• Chapter I – Assess the role of TTR in peripheral nerve biology in physiological 

conditions and after injury. 

 

• Chapter II – Assess the biological consequences of increased NPY levels in TTR 

KO mice, specifically in bone and brain. 
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CHAPTER I 

 

Assessment of TTR function in 

the peripheral nerve biology 

 
 



Chapter 1 – Introduction 

INTRODUCTION 

TTR function in nerve biology is not fully understood. The blood-nerve barrier 

(BNB) is effective in slowing the entry of proteins in the endoneurium although it does not 

prevent them to enter. TTR may also have access to peripheral nerves through the CSF, 

where it is present in high levels. In fact, Fleming et al (2009) not only reported that 

intravenously injected TTR is detectable in the endoneurium of both WT and TTR KO 

nerves, 1 to 3 days after crush, but also under physiological conditions. 

According to Fleming et al (2007), under physiological conditions, TTR KO mice 

display limb clasping and a higher latency to respond to thermal stimulus. However, this 

sensorimotor impairment was not related to differences on the dendritic tree structure nor 

on the number of cerebellum Purkinje cells (the centre of motor coordination) (Fleming et 

al., 2007). Also, under physiological conditions, no significant differences were found on 

the total number of myelinated fibers nor in the g ratio (a measure of myelin thickness) in 

the sciatic nerve of young adult WT and TTR KO mice (Fleming et al., 2007), that could 

underlie the sensorimotor impairment of the latest. Moreover, after sciatic nerve crush, 

TTR KO revealed a lower motor nerve conduction velocity and locomotor activity when 

compared to WT (Fleming et al., 2007). These findings point towards the hypothesis that 

TTR KO mice have a delayed regeneration. Supporting this hypothesis, dorsal root ganglia 

(DRG) neurons supplemented with WT mouse serum in vitro, presented an increase in 

neurite number when compared to DRG neurons supplemented with TTR KO mouse 

serum. This suggests that, at least in vitro, TTR delivery can induce neurite outgrowth. In 

this respect, the internalization of TTR by sensory neurons was shown to be a clathrin-

dependent endocytic process (Fleming et al., 2009), necessary for TTR to exert its 

neuritogenic effect. 

Despite that these studies unravel a role of TTR in nerve regeneration and 

sensorimotor performance, morphometric analysis of regenerating WT and TTR KO 

nerves was lacking. Also, the effect of TTR delivery in vivo needed to be explored. 

Additionally, the mechanism through which TTR exerts its function is still unknown. 

The present work aims to address the physiological effect of TTR on peripheral 

nerve and the biological consequences for nerve biology when TTR is lacking. 
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Chapter 1 – Materials and Methods 

MATERIALS AND METHODS 

Animals 

Mice were handled according to the European Communities Council Directive 

(86/609/EEC) as well as to the National rules and all studies performed were approved by 

the Portuguese General Veterinarian Board. WT and TTR KO littermate mice as well as 

megalin heterozygous [MEG (+/-), were kindly provided by Dr. Thomas Willnow, Max-

Delbrueck Center for Molecular Medicine, Berlin, Germany],  TTR KO/MEG (+/-) 

littermate mice (in the 129/Sv background), and Thy 1.2-TTR transgenic mice in a TTR 

KO background (Sousa et al., 2004c) were obtained from the offspring of heterozygous 

breeding pairs and maintained at 24 ± 1oC under a 12 h light/dark cycle and fed regular 

chow and tap water ad libitum. Prior to all experimental procedures, animals were 

anesthetized with ketamine (1mg/g weight)/medetomidine (0.02 μg/g weight). Genotypes 

were determined from tail extracted genomic DNA, using primers for the detection of exon 

2 of TTR (which is disrupted in TTR KO by the neomycin resistance gene) and primers for 

the neomycin resistance gene, as previously described (Episkopou et al., 1993). All 

experiments were performed with the observer blinded to the animal’s genotype. 

 

Neuromuscular junction analysis 

For whole muscle preparations, 24 months-old mice were killed using a lethal 

anesthesia dosage. Gastrocnemius muscles were dissected in PBS and fixed in 4% 

paraformaldehyde for 20 min, washed in PBS and incubated overnight in 0.1 M glycin at 

4ºC. After permeabilization with 0.5% Triton X-100 for 15 minutes, muscles were 

incubated 1 h with 5μg/ml α-bungarotoxin (B-1601, Molecular Probes) in 1mg/ml BSA, 

washed and mounted in PBS. Images were taken using a Zeiss Axio Imager Z1 

fluorescence microscope at a 20x magnification.  Quantifications were performed using 

AxioVision (Release 4.8). 

 

Morphometric analysis 

Mice were killed using a lethal anesthesia dosage. Nerve segments with 3 mm were 

fixed overnight in 1.25% glutaraldehyde in 0.1 M sodium cacodylate, washed in 0.1 M 

sodium cacodylate for 30 min, postfixed in 1% osmium tetroxide in 0.2 M sodium 
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cacodylate for 60 min, washed again in 0.1M sodium cacodylate for 30 min, dehydrated 

using a series of graded alcohols and propylene oxide, and embedded in epon. Transverse 

sections (1.0 μm thick) were cut with a SuperNova, Reichest, Leica ultramicrotome, and 

stained with 1% toluidine blue in an 80°C heating plate for 20 s. For each animal, the total 

number of myelinated fibers present in one semithin section was determined by counting 

40X magnified photographs covering the whole nerve area. To determine the density of 

unmyelinated fibers, ultrathin transverse sections were cut and stained with uranyl acetate 

and lead citrate. For each animal, 20 non-overlapping photomicrographs (7000X 

amplification) corresponding to ≈ 9000 μm2 of each ultrathin section were taken and 

analyzed using a transmission electron microscope (Zeiss 902A). To assess possible 

differences in nerve total areas between strains, these were determined from either 4X or 

10X magnified photos of sciatic nerve transverse sections using the ImageProPlus software 

(Infaimon, Aveiro, Portugal). 

 

Nerve injury 

Mice were anaesthetized and a 4 mm long incision was made in the shaved thigh 

skin. For nerve crush, the sciatic nerve was exposed and crush was performed using Pean 

forceps, twice during 15 s. To standardize the procedure and yield reproducible 

sensorimotor deficits, the crush site was maintained constant for each animal at 35 mm 

from the tip of the third digit. A single skin suture, immediately above the crush site, 

served as an additional reference. After surgery, animals were allowed to recover for 15 or 

30 d after which the injury site was identified based on its position and on the presence of a 

subtle epineural scar. 

 

In vivo analysis of retrograde transport using cholera toxin B 

The sciatic nerve of WT and TTR KO mice was exposed and transected at the 

midtight level; a solution of the retrogradely transported cholera toxin B subunit (0.5 

mg/ml, List Biological) was applied to the proximal end of the transected sciatic nerve for 

35 min. The skin was subsequently sutured and mice were allowed to recover for 72 h, 

after which the L4–6 DRG were collected and fixed in 4% neutral buffered formalin. To 

detect retrogradely labeled sensory neurons, serial 4-μm-thick DRG sections were cut and 

processed for anti-cholera toxin immunohistochemistry. Briefly, sections were blocked in 
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blocking buffer (1% BSA and 4% fetal bovine serum in PBS) for 30 min at 37°C and 

incubated with anti-cholera toxin antibody (Calbiochem; 1:1000) diluted in blocking buffer 

overnight at 4°C. Antigen visualization was performed with the biotin-extravidin-

peroxidase kit (Sigma). For each animal, to determine the percentage of retrogradely 

labeled sensory neurons, the total number of DRG neurons, as well as the number of 

labeled DRG neurons presenting visible nuclei was counted every 24 μm. 

 

Megalin immunohistochemistry 

For immunohistochemistry using the sheep anti-megalin primary antibody (1:2000, 

kindly provided by Dr. Pierre Verroust), antigen unmasking was done by boiling 3 X in 0.5 

mM EDTA 10 mM Tris pH = 9.0 solution. Sections were blocked in blocking buffer (1% 

bovine serum albumin and 4% fetal bovine serum in PBS) for 30 min at 37°C and 

incubated with primary antibody diluted in blocking buffer overnight at 4°C. Antigen 

visualization was performed with the biotin-extravidin-peroxidase kit (Sigma). Slides were 

counterstained with hematoxylin (Merck). 

 

Statistical analysis 

Statistical analysis was performed using the Student’s T-test. Results were expressed 

as average ± SEM. 

 

 

 

 



Chapter 1 – Results 

RESULTS 

Aged TTR KO mice present normal peripheral nerves and neuromuscular junctions 

We investigated possible differences in the peripheral nervous system of TTR KO 

mice (24 months-old) when compared to WT littermates. To determine if the lower 

sensorimotor performance of TTR KO mice was related to altered neuromuscular junctions 

(NMJ), we analyzed the lower limb muscles of 24 month-old mice. No differences were 

observed in NMJ morphology. Also, no differences were found in the total areas of 

individual junctions (figure 1).  

 

 

Figure 1 – TTR KO mice present normal motor-end plates. Average NMJ size (μm2). Pictures illustrate (A) 
WT (n = 3) and (B) TTR KO (n = 4) NMJs stained with α-bungarotoxin-Texas Red. Scale bar = 20 μm. 

 

Moreover, by morphometric analysis, no differences were found in peripheral nerves 

of old mice (figure 2). 
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Figure 2 – Morphometric analysis of aged WT (n=3) and TTR KO (n=4) mice peripheral nerves. Results are 
presented as average ± SEM. 
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Taken together, these results suggest that the lower sensorimotor performance of 

TTR KO mice is not related to an altered motor-end plate conformation. However, we 

should not discard the hypothesis of an impairment in the terminal axons that innervate 

distal muscles. Further studies should address this issue. 

In summary, our results show that, under physiological conditions, lack of TTR does 

not compromise sciatic nerve development and does not affect muscle innervation. 

 

After sciatic nerve crush, lack of TTR is related to a decreased regeneration capacity 

We raised the hypothesis that the consequences of TTR deficiency could be 

strengthened under stress. In fact, by functional analysis, TTR KO mice were reported as 

having approximately a 50% decreased motor nerve conduction velocity following nerve 

crush when compared to WT mice (Fleming et al., 2007). To assess whether the decreased 

functional performance of TTR KO mice correlated with neuropathological findings, nerve 

regeneration was scored by morphometry in 3, 6, and 12-months-old WT and TTR KO 

mice where nerve crush was performed and regeneration was assessed 15 and 30 days 

post-crush by morphometric analysis of the distal stumps. 

TTR KO mice presented, after 15 days of regeneration, an approximately 20% 

decrease in the total number of myelinated fibers (figure 3A) when compared to WT 

littermates although, after 30 days of regeneration, no statistically significant differences 

were observed neither on the total number of myelinated fibers (figure 3A) nor in the g 

ratio (data not shown) between strains. 

In relation to the density of unmyelinated fibers, after 15 days of regeneration, TTR 

KO mice presented a trend for a lower fiber density in all age groups, (figure 3B), whereas, 

after 30 days of regeneration, TTR KOs presented an approximately 40% lower density of 

unmyelinated fibers when compared to WT mice (figure 3B). These results were unrelated 

to differential nerve areas as, both after 15 and 30 days of regeneration, no differences 

were found between the total nerve areas of WT and TTR KO mice (data not shown). 
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Figure 3 – Lack of TTR delays nerve regeneration. (A) Total number of myelinated fibers in the distal 
nerve segments of 3, 6, and 12-months-old WT and TTR KO mice 15 (WT: n = 4, n = 5, and n = 4; TTR KO: 
n = 5, n = 5, and n = 4, respectively for each age group), and 30 days (WT: n = 6, n = 5, and n = 4; TTR KO: 
n = 5, n = 5, and n = 6, respectively for each age group) after nerve crush; (B) Density of unmyelinated fibers 
in the distal nerve segments of 3, 6, and 12-months-old WT and TTR KO mice 15 and 30 days after nerve 
crush (number of animals assessed were the same as detailed in (A); mo- months, *p < 0.05, **p < 0.01. 
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In summary, our data shows that the lack of TTR delays nerve regeneration as seen 

morphometrically by the decrease in the number and density of myelinated and 

unmyelinated fibers. 

 

Expression of TTR in the nerve of TTR KO mice leads to gain of regenerative capacity 

The Thy1.2 promoter (Caroni, 1997) allows expression in both sensory and motor 

neurons. As such, transgenic mice expressing human TTR under the control of the Thy1.2 

promoter were generated (Sousa et al., 2004c). These mice were subsequently backcrossed 

to a TTR KO background, resulting in a mouse strain (Thy1.2-TTRxTTR KO mice) that 

expresses human TTR in neurons with no expression of endogenous mouse TTR (Fleming 

et al., 2007). 

No differences in the morphometric analysis (number of both myelinated and 

unmyelinated fibers) were observed comparing sciatic nerves from Thy1.2-TTRxTTR KO 

with nerves from WT and TTR KO mice under physiological conditions (data not shown). 

However, when nerve crush in Thy1.2-TTRxTTR KO mice was preformed, we observed 

an increase of the regenerative capacity of these mice when compared to WT and TTR KO. 

At 15 days of regeneration, Thy1.2-TTRxTTR KO mice showed an augment of 40% in the 

number of myelinated and unmyelinated fibers, respectively, in relation to WT. 

Furthermore, we observed an increase of 55% and 45% in the number of myelinated and 

unmyelinated fibers, respectively, in Thy1.2-TTRxTTR KO mice when compared the TTR 

KO mice (figure 4). 

As expected, the three strains presented similar number of myelinated fibers after 30 

days of regeneration. However, the Thy1.2-TTRxTTR KO mice (n = 6), presented a 21% 

increase in the density of unmyelinated fibers when compared TTR KO mice (figure 4), 

reinforcing the evidence of TTR’s regenerative capacity. 
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Figure 4 – Regeneration of 12-months-old WT and TTR KO mice and 18-months-old Thy1.2-TTRxTTR 
KO mice, 15 and 30 days after nerve crush. (A) Total number of myelinated fibers; (B) Density of 
unmyelinated fibers; THY-Thy1.2-TTRxTTR KO mice, * p< 0.05, ** p< 0.01. 

 

Our results show that neuronal TTR expression in a TTR KO background increases 

the regenerative capacity rescuing their phenotype. 

 

Local TTR delivery to the crushed nerve rescues the regeneration phenotype of TTR 

KO mice 

The hypothesis that local TTR delivery to the injury site revert the phenotype of TTR 

KO mice was tested. After crush, human TTR fluorescently labelled with Alexa 488 

(hTTR-Alexa 488) was locally administrated to the crush site. Mice were allowed to 

recover for either 15 or 30 days. Matrigel (the chosen vehicle composed by extracellular 

matrix components) is constituted by laminin which hasten nerve regeneration in vivo 

(Madison et al., 1985). One day after crush, hTTR-Alexa 488 was detected in the injury 

site demonstrating the effectiveness of focal administration (Fleming et al., 2009). 

The lack of TTR could not be reversed by delivering to the nerve Matrigel alone as a 

decrease of 24% in the density of myelinated fibers was still observed in TTR KO in 

relation to WT mice (figure 5A and 4B). Nevertheless, following delivery of Matrigel 

coupled with TTR, TTR KO littermates presented a similar density of myelinated fibers to 

WT mice, restoring the normal phenotype (figure 5A). 

In relation to unmyelinated fibers, as expected, no differences in their density were 

found between strains after 15 days of regeneration (Fleming et al., 2007). Therefore, the 
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density of unmyelinated fibers in the injured nerves supplemented with Matrigel alone or 

coupled with hTTR-Alexa 488 was not assessed at this time point. After 30 days of 

regeneration, although TTR KO nerves where Matrigel alone was delivered presented a 

30% lower density of unmyelinated fibers (figure 5C), TTR KO nerves where Matrigel 

coupled to hTTR-Alexa 488 was added in the injury site, reached WT levels, overcoming 

the lack of TTR and, similary to the myelinated fibers, rescuing the WT phenotype. 

 

A

 

 

B C

Figure 5 – Local delivery of TTR to the crushed nerve. (A) Semithin sections of distal nerve stumps 15 d 
after nerve crush from WT mice (a, c) and TTR KO mice (b, d), in which Matrigel either alone (a, b) or 
supplemented with TTR (c, d) was added. Scale bars = 10 μm. (B) Corresponding density of myelinated 
fibers. WT: n=6 and n= 7; TTR KO: n=5 and n=7, respectively, for each setting. (C) Density of unmyelinated 
fibers 30 d after nerve crush in WT and TTR KO mice, in which Matrigel either alone or supplemented with 
TTR was added. WT: n=6 and n=5; TTR KO: n=8 and n=8, respectively, for each setting; Matrigel alone 
(matrigel), Matrigel supplemented with TTR (matrigel-TTR).*p<0.05, **p<0.01. 
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In summary, our data shows that local TTR delivery to the crush site rescues the 

regenerative impairment of TTR KO mice further reinforcing the observation that TTR is a 

regeneration enhancer. 

 

TTR KO mice present a compromised retrograde transport 

In order to determine the reason for the impaired regenerative capacity of TTR KO 

mice, retrograde transport was analysed. 

p75NTR is a receptor that undergoes retrograde transport after binding neurotrophins 

at the axonal terminals (Curtis et al., 1995) and, as it accumulates in the distal side on 

ligated nerves, it is a good tool to evaluate retrograde transport (Johnson et al., 1987; 

Taniuchi et al., 1988). TTR KO mice presented compromised retrograde transport as they 

were described as having accumulation of p75NTR in the distal side on ligated nerves after 

chronic constriction injury, despite no differences were detected in the p75NTR expression 

between WT and TTR KO nerves (Fleming et al., 2009). 

To further establish, in vivo, the relation between the absence of TTR and the 

impairment of retrograde transport, WT (n = 6) and TTR KO (n = 5) sciatic nerves were 

retrogradely labelled with cholera toxin B. The DRG neurons of TTR KO mice presented 

an approximately 30% lower number of cells labelled with cholera toxin when compared 

to WT littermates (figure 6), corroborating the previous results. 
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Figure 6 – TTR KO mice present a lower number of DRG neurons labelled with cholera-toxin when 
compared to WT DRG neurons following retrograde transport with cholera toxin B. *p < 0.05 
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These data suggest that the TTR KO lower regenerative capacity may be delayed due 

to a compromised retrograde transport. 

 

Megalin is expressed by DRG neurons and is necessary for TTR neuritogenic effect 

Megalin is an endocytic TTR receptor well described in the kidney (Sousa et al., 

2000) and is implicated in metallothionein uptake by neurons (Ambjorn et al., 2008; 

Fitzgerald et al., 2007). As this receptor could be the key to understand TTR uptake by 

neurons (Fleming et al., 2009) needed for the neuritogenic activity of this protein, we 

verified if DRG neurons were able to express megalin. By immunohistochemistry (and 

using kidney as a positive control) we confirmed that, in fact, DRG neurons express 

megalin (figure 7). These results corroborate previous data where megalin expression was 

confirmed by RT-PCR (Fleming et al., 2009). 

 

 

Figure 7 – TTR internalization by DRG neurons is megalin mediated. Megalin immunohistochemistry of 
kidney (left), and DRG in the absence (–, middle) and presence (+, right) of primary antibody. Scale bar = 50 μm. 

 

In vivo, decreased megalin levels lead to decreased nerve regeneration in a TTR-

dependent process 

Nerve crush was performed in WT, TTR KO, megalin heterozygous (MEG (+/-)) – 

we used megalin heterozygous as homozygous animals died minutes after birth (Willnow 

et al., 1996) – and TTR KO/MEG (+/-) animals to evaluate the influence of megalin in the 

action of TTR in vivo. After 15 days of recovery, sciatic nerve was collected and assessed 

by morphometry. According to previous results, TTR KO mice showed a decrease (30 %) 

in the density of myelinated fibers. TTR KO/MEG (+/-) and MEG (+/-) mice had similar 

results suggesting that, in nerve regeneration, there is no influence of other megalin ligands 
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and that megalin plays an important role in the process of sciatic nerve regeneration (figure 

8). 

 

  

Figure 8 – Morphometric analysis of sciatic nerves from WT, TTR KO, MEG (+/-), and TTR KO/MEG 
(+/-) mice. Density of myelinated fibers 15 days after nerve crush. *p < 0.05. 

 

In summary, TTR internalization by sensory neurons is megalin mediated and 

necessary to promote nerve regeneration. 
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DISCUSSION 

The neuromuscular junction (NMJ) is the sole communicative link between 

motorneurons and muscle fibers. Its structure and function is reviewed by Hirsch (2007). 

The cause for the sensorimotor impairment in TTR KO mice still needs to be disclosed as, 

under physiological conditions, no differences were found in the areas of NMJs nor in the 

density of myelinated and unmyelinated fibers in the sciatic nerve of TTR KO mice when 

compared to WT littermates. In addition, the motor discoordination was not related to 

differences in the cerebellum (Fleming et al., 2007). However, this impairment can be 

related to motor neuron death or defects in terminal axons. Further studies should evaluate 

if motor axon abnormalities such as axonal swellings, demyelinated axonal segments or 

extensive axons branching (Court et al., 2008) are causing this impairment. Preliminary 

analysis of TTR KO and WT mice sciatic nerve microarrays suggest a downregulation in 

genes encoding cytoskeleton structures, namely, specific proteins of intermediate filaments 

in the nervous system. The downregulation of genes such as those encoding neurofilament, 

contactin and tau (9-fold, 6-fold and 3-fold respectively) can be related to an impairment in 

the axonal cytoskeleton and, consequently, be the cause of motor discoordination. 

Nerve regeneration is a process of the utmost importance in biological systems. 

Although the PNS has a regeneration permissive environment, as axons sprout in adult 

peripheral nerves after injury, target innervation is often incomplete, resulting in a 

disappointing functional recovery. The functional and morphometric analysis here 

described clearly demonstrates that TTR enhances and accelerates regeneration; in the 

scenario of nerve regeneration, timely target innervation is crucial for regain of functional 

capacity. In relation to unmyelinated fibers, the absence of differences in their number 

after 15 days of regeneration, might be due to the impossibility at this time point to clearly 

distinguish fibers that will become small myelinated axons from those that will in fact 

remain unmyelinated; TTR is therefore probably related to a decreased number of 

unmyelinated fibers throughout the whole regeneration process. These results suggest that 

the absence of TTR is related to a delayed axonal growth of myelinated fibers, as reflected 

by their decreased number after 15 days of regeneration that, however, reaches WT 

numbers after 30 days of regeneration. 

The impact of TTR in nerve regeneration was further established through the 

demonstration that either genetic correction or local TTR delivery was successful in 
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abolishing the differences between WT and TTR KO mice. When an injury takes place, 

plasma TTR has its entrance in the nervous tissue facilitated, as the BNB is disrupted. In 

recipients of FAP livers, TTR deposits were found within the nerve, suggesting that plasma 

TTR can cross the BNB (Sousa et al., 2004b). Intravenous injection of hTTR-Alexa 488 

show that plasma TTR is, in fact, able to enter intact nerves through the BNB (Fleming et 

al., 2009), which is effective in slowing but not in preventing the entry of proteins into the 

endoneurium (Wadhwani and Rapoport, 1994). Local TTR expression in the nerve rescued 

the TTR KO slower regenerative phenotype in Thy1.2-TTRxTTR KO mice. The faster 

regeneration of Thy1.2-TTRxTTR KO mice in relation to WT animals was probably due to 

the fact that TTR expression in neurons is not a physiological situation; under normal 

conditions, as occurs in WT mice, TTR might enter the endoneurium through the blood 

and CSF, whereas Thy1.2-TTRxTTR KO express TTR locally in 70% of all sensory and 

motor neurons (Sousa et al., 2004c). 

One should note that in regeneration, TTR effect probably does not result from 

impaired retinoic acid or thyroid hormone metabolism as, despite low plasma retinol 

levels, TTR KO mice are euthyroid (normal thyroid gland function) (Palha et al., 1994) 

and do not show any symptoms of vitamin A deficiency (Episkopou et al., 1993). 

Additionally to a decreased axonal growth, TTR KO axons have lower levels of 

retrograde transport both in vitro and in vivo. Being the transmission of signals to the cell 

body a key process in nerve regeneration, the compromised retrograde transport of TTR 

KO axons might be, at least in part, responsible for the delayed regenerative capacity of 

TTR KO mice and decreased neurite outgrowth in the absence of TTR. TTR internalization 

by a clathrin-dependent endocytic process is crucial for the enhancement of neurite 

outgrowth by TTR as, when the protein was prevented from being internalized, neurite 

outgrowth was abolished (Fleming et al., 2009). Megalin, an endocytic TTR receptor 

(Sousa et al., 2000), is involved in receptor-mediated endocytosis in clathrin-coated pits of 

a wide range of ligands and was described as being important for preventing TTR filtration 

through the glomerulus (Sousa et al., 2000). In addition to megalin expression in DRG 

neurons, our results show that decreased levels of megalin lead to decreased nerve 

regeneration and that TTR neuritogenic activity depends on its internalization by this 

receptor. Also, the relevance of megalin in the nerve is supported by the fact that its partial 

absence is sufficient to impair TTR-mediated enhancement of nerve regeneration further 
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validating the importance of this receptor in the nervous system and particularly in the 

course of nerve regeneration. 

In conclusion, the presence of TTR in the nerve, and its internalization by megalin 

receptors in the DRG, is a key factor in a timely effective response to promote nerve 

regeneration after injury. As such, TTR promotes a correct axonal outgrowth that is crucial 

for correct target innervation. 
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INTRODUCTION 

Transthyretin (TTR) KO mice show increased levels of amidated neuropeptides due 

to overexpression of peptidylglycine α-amidating monooxygenase (PAM) (Nunes et al., 

2006), the only enzyme that α-amidates peptides, which is rate-limiting in the process of 

neuropeptide maturation, as its substrates exist in excess (Mains et al., 1987; Prigge et al., 

2000). Among the neuropeptides which are amidated by PAM, neuropeptide Y (NPY) is 

the most abundant both in the central and peripheral nervous system. As NPY requires 

PAM-mediated α-amidation for biological activity (Eipper et al., 1992) PAM 

overexpression in TTR KO mice results in increased levels of processed amidated NPY, 

without an increase of NPY expression (Nunes et al., 2006). TTR KO mice show a 

significant NPY-overexpressor phenotype including a decreased body temperature, an 

increased carbohydrate preference and consumption (Nunes et al., 2006) and reduced 

depressive behavior (Sousa et al., 2004a). 

NPY has been correlated with alterations in bone mass although controversy still 

surrounds this issue. A recent study revealed that exogenous NPY administration does not 

produce any alteration in cancellous bone mass (Allison et al., 2009; Baldock et al., 2002). 

However, a decrease in bone mass after NPY intracerebroventricular infusion has already 

been reported (Ducy et al., 2000). As NPY action in the bone is still controversial and 

given that TTR KO mice are a mouse model for increased NPY, studies were preformed to 

evaluate whether, similarly to the nervous system, increased NPY levels were found in 

bones of TTR KO mice. Nunes et al (2009a) reported that NPY expression was detected in 

various adult bone cells and, as expected, with higher levels in TTR KO mice. Increased 

alkaline phosphatase activity and osteocalcin expression in TTR KO bone marrow stromal 

cells suggested an enhanced competence to undergo osteoblast differentiation (Nunes et 

al., 2009a). 

In this study we further investigate the biological consequences related to the 

increased NPY levels associated with increased PAM expression in bone of this strain. 

Accumulating evidence shows a neuroprotective action of NPY, as well as a 

stimulating effect on neurogenesis leading to an increased proliferation of adult neuronal 

precursor cells in the dentate gyrus (DG) (Howell et al., 2005) and subventricular zone 

(Agasse et al., 2008). Recently, Nunes et al (2009b) reported that TTR KO mice 

organotypic hipocampal slice cultures display decreased AMPA–induced 
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neurodegeneration. Taken together, it is plausible that the increased NPY levels in the 

hippocampus of TTR KO mice (Nunes et al., 2006) are responsible for the neuroprotection 

in TTR KO hippocampal cultures, as NPY prevents neuronal cell death in organotypic 

hippocampal slice cultures exposed to an excitotoxic insult (Silva et al., 2003; Xapelli et 

al., 2007). In this respect, we addressed the effect in neuroproliferation of increased NPY 

levels in TTR KO mice. 
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MATERIALS AND METHODS 

Animals 

Mice were handled according to the European Communities Council Directive 

(86/609/EEC) as well as to the National rules and all studies performed were approved by 

the Portuguese General Veterinarian Board. WT and TTR KO littermate mice were 

obtained from the offspring of heterozygous breeding pairs and maintained at 24 ± 1oC 

under a 12 h light/dark cycle and fed regular chow and tap water ad libitum. Prior to all 

experimental procedures, animals were anesthetized with ketamine (1mg/g 

weight)/medetomidine (0.02 μg/g weight).  

 

Bone Histology 

Femurs were harvested from 3 month old male WT (n=6) and TTR KO (n=5) mice. 

After measuring their length, bones were fixed in 4% paraformaldehyde in PBS, 

decalcified as described above and embedded in paraffin. Serial 10-um-thick longitudinal 

sections were cut. Sections were then deparaffinated, dehydrated in a modified alcohol 

series and stained for hematoxilin/eosin. 

 

Immunohistochemistry 

Femurs from 3 month old male WT (n=6) and TTR KO (n=5) littermates were fixed 

in 4% paraformaldehyde in PBS, decalcified in TBD-1 commercial solution (Thermo 

Electron Corporation), embedded in paraffin, and serial 4-µm-thick longitudinal sections 

were cut. For studies during embryonic development, 16 or 18 days WT pregnant females 

were killed by cervical dislocation, and the fetuses were collected by cesarian section. 

Sections were then deparaffinated, dehydrated in a modified alcohol series and blocked for 

the endogenous peroxidase activity. NPY immunohistochemistry was performed with the 

MOM Kit (Vector), following the manufacturer’s instructions. Briefly, bone sections from 

WT and TTR KO mice, were incubated in the MOM kit blocking reagent for 1 hour at 

room temperature, prior to incubation with the monoclonal NPY antibody, NPY05 

(generously provided by Dr. Eric Grouzmann, University Hospital, Lausanne, Switzerland, 

1:2,000 in MOM diluent) for 1 hour at room temperature. NPY05 is specific for the 

amidated form of NPY (Grouzmann et al., 1992). Antigen visualization was performed 
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with the MOM Avidin:Biotinylated peroxidase Complex (ABC) reagent (Vector), using 3-

amino-9-ethyl carbazole (Sigma) as substrate. On parallel control sections, the primary 

antibody was replaced by mouse immunoglobulin G (Sigma). Immunohistochemistry for 

osteocalcin (a positive control for osteoblast staining) and PAM were also performed. 

Briefly, sections were incubated in blocking buffer (1% BSA, and 4% bovine serum in 

PBS) for 30 min at 37ºC in a moist chamber, followed by the incubation with primary 

antibodies at the appropriate dilution in blocking buffer, overnight at 4ºC. The dilutions 

used were 1:500 for goat anti-osteocalcin (Biomedical Technologies Inc) and 1:500 for 

rabbit anti-PAM (kindly provided by Dr Richard Mains, University of Connecticut Health 

Center). Antigen visualization was performed with the biotin-extravidin-peroxidase kit 

(Sigma), using 3-amino-9-ethyl carbazole (Sigma) as substrate. On parallel control 

sections, the primary antibody was replaced by blocking buffer. Immunohistochemistry 

analysis was carried out independently by two observers. For quantification of PAM 

immunohistochemistry, the number of labeled cells/mm2 was scored in 3 non-overlapping 

micrographs with a magnification of 40x. 

 

Bone marrow stromal cell culture 

Primary BMSCs were obtained according to the method developed by 

Maniatopoulos et al (Maniatopoulos et al., 1988). Briefly, femurs and tibias from 1 month 

old male WT and TTR KO littermates were aseptically excised from the hind limbs, the 

epiphyses cut off, and the marrow flushed with standard culture medium, which consisted 

of alpha-MEM supplemented with 10% FBS, 50 μg/mL gentamicin sulfate, and 2.5 μg/mL 

amphotericin B (Invitrogen). Cells were seeded in 75-cm2 plastic culture flasks, and 

incubated in a humidified incubator (37°C and 5% CO2). The medium was changed after 

the first 24 h to remove nonadherent cells. Subsequently, the adherent cells were cultured 

for 10 days, the medium being renewed every 3 days. 

 

Differentiated bone marrow stromal cells 

BMSCs were cultured as above, trypsinized and seeded in 24-well plates at a density 

of 4x104 cells per well. Cells were then differentiated in osteoblasts by the addition of 50 

μg/mL Vitamin C (Sigma) and 10 mM beta-glycerophosphate (Sigma) to the culture 

medium, and cultured for 3, 7 and 14 days. 
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Reverse transcription-PCR 

Total RNA from cell culture samples was isolated with the RNeasy Micro Kit 

(Qiagen) and subjected to RT-PCR with the Superscript II kit (Invitrogen). PCR was 

performed for the appropriate number of cycles for each cDNA (20-40 cycles) at 95ºC for 

1 min, 56ºC for 2 min and 72ºC for 3 min. Sense and antisense primers were: 

− for β-actin: 

• 5’-GTGGGCCGCTCTAGGCACCAA-3’ and  

• 5’-CTCTTTGATGTCACGCACGATTTC-3’; 

− for HPRT: 

• 5'-GTAATGATCAGTCAACGGGGGAC-3' and  

• 5'-CCAGCAAGCTTGCAACCTTAACCA-3'; 

− for GAPDH: 

• 5'-ACTCCACTCACGGCAAATTC-3' and  

• 5'-CCTTCCACAATGCCAAAGTT-3'; 

− for NPY: 

• 5’-TGGACTGACCCTCGCTCTAT-3’ and  

• 5’-GATGAGGGTGGAAACTTGGA-3’; 

− for osteocalcin: 

• 5’- CTCTGTCTCTCTGACCTCACAG-3’ and  

• 5’-CAGGTCCTAAATAGTGATACCG-3’ (Salingcarnboriboon et al., 2006); 

− for osteopontin: 

• 5’-TCTGATGAGACCGTCACTGC-3’ and  

• 5’- TCTCCTGGCTCTCTTTGGAA-3’; 

− for PAM: 

• 5’-CCTGGGGTCACACCTAAAGA-3’ and  

• 5’-TGTAAGGACACACCGGAACA-3’; 
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Unreferenced primers were designed using PRIMER3 (http://frodo.wi.mit.edu/cgi-

bin/primer3/primer3_www.cgi) and the sequence from the National Centre for 

Biotechnology Information database. All primers used were located on two different exons 

to ensure that only properly spliced mRNA and not genomic DNA contaminants was 

amplified. Ethidium bromide-stained gels were scanned using a Typhoon 8600 

(Amersham) and amplified bands were quantified using the ImageQuant software 

(Amersham). Fluorescence density of each PCR-amplified band was normalized with the 

corresponding value of β-actin, HPRT and/or GAPDH. Experiments were made in 

triplicate and a representative amplification is shown. 

 

BrdU treatment and immunohistochemistry 

Three-month old male WT (n=6) and TTR KO (n=6) mice were injected i.p. with 50 

mg/kg BrdU once a day for 3 consecutive days. Twenty-four hours after the last injection, 

animals were perfused with 4% paraformaldehyde, 4% sucrose and 0.9% NaCl pH 7.4. 

Brains were paraffin-embedded and serial 4-µm-thick coronal sections were cut through 

the forebrain at levels including the lateral ventricles and the hippocampus with 6 sections 

(spaced between each other by 60 μm) mounted per slide. BrdU immunohistochemistry 

was performed using monoclonal BrdU antibody (1:1,000 in MOM diluent). For each 

animal, BrdU-immunoreactive cells in the DG and SVZ were counted bilaterally on 3 

consecutive slides. To control BrdU treatment and immunohistochemistry, the small 

intestine (which contains numerous rapidly proliferating cells) of each of the analysed 

mice, was processed similarly for BrDU immunohistochemistry. 

 

Statistical analysis 

Statistical analysis was performed using the Student’s T-test. Results were expressed 

as average ± SEM. 
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RESULTS 

TTR KO bone presents higher levels of PAM and NPY expression  

We determined that NPY expression in bone starts early at day 16 of embryonic 

development in megakaryocytes, articular chondrocytes and osteocytes (figure 1). 

Moreover, it was shown by our group that NPY is expressed in the same cell types in the 

adult bone and that TTR KO mice have an increased content of amidated NPY in the bone 

when compared to WT littermates (Nunes et al., 2009a). 

 

 
Figure 1 –  NPY-immunoreativity detected in bone embryos at day 16 of development. Panel 1 – 
megakaryocyte (M) and bone marrow (BM); panel 2 – articular chondrocytes (AC); panel 3 – osteocyte (O). 
Scale bar = 50 μm. 

 

Since increased PAM expression was observed both in the PNS and CNS of TTR 

KO mice underlying the increased NPY levels in the nervous system (Nunes et al., 2006),  

we hypothesized that the increased levels of NPY detected in the bone of TTR KO mice 

were related to increased PAM expression in this tissue. In fact, PAM-immunoreactivity 

was detected in megakaryocytes and other various bone cell types (figure 2A). Moreover, 

by densitometry, TTR KO littermates presented a higher number of bone marrow cells 

labelled with α-PAM antibody per mm2 when compared to WT (figure 2B). 
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Figure 2 – PAM is expressed in bone. (A) PAM-immunoreactivity is detected in megakaryocytes (panel 1, 
arrows), osteocytes (panel 2, arrows), osteoblasts (panel 2, arrowheads) and chondrocytes (panel 3). Scale bar 
= 50 μm. (B) Quantification of the density of PAM immunostaining in the bone marrow of WT and TTR KO 
mice. *p<0.05. 

 

Increased NPY in the bone of TTR KO mice is related to increased osteoblastic 

differentiation 

We analyzed bone marrow stromal cells (BMSC) to investigate if, in vitro, during the 

course of BMSC differentiation (after 3, 7 and 14 days of culture) these differences 

between strains were maintained. Again, increased levels of PAM expression were 

observed by RT-PCR in TTR KO BMSC at day 3 and day 14 of culture when compared to 

WT (figure 3). These results are in accordance with the higher levels of NPY described in 

TTR KO BMSC during osteoblast differentiation (Nunes et al., 2009a) suggesting a 

putative role of NPY in osteoblast differentiation. 
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Figure 3 – PAM expression in bone cells from WT and TTR KO mice. Semiquantitative RT-PCR 
analysis of PAM expression normalized for actin (A) or HPRT (B) expression in BMSCs from WT and TTR 
KO mice at days 3 and 14 of osteoblast differentiation. Results are presented as average ± SEM; *p<0.05. 

 

We observed increased levels of osteoblast phenotype markers namely osteopontin 

and osteocalcin (figure 4A and B, respectively) in TTR KO BMSC cultures. 
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Figure 4 – Osteoblast differentiation of WT and TTR KO BMSCs as assessed by osteocalcin and 
osteopontin levels. Osteocalcin expression normalized for the expression of GAPDH and HPRT at day 3 
(left). Osteopontin expression normalized for the expression of actin, GAPDH and HPRT at day 3 under 
osteoblast differentiation conditions (right). Results are presented as average ± SEM; *p<0.05; **p<0.005. 

 

In summary, our data shows that TTR KO mice have increased PAM expression in 

the bone and, consequently, higher NPY levels. Moreover, our data suggest that increased 

NPY levels are related to the increased osteoblast differentiation. 

 

Neuroproliferation is not affected in TTR KO brain  

NPY has been described as a neuroproliferator in the dentate gyrus (DG) (Howell et 

al., 2005) and subventricular zone (SVZ) (Agasse et al., 2008). Since TTR KO mice have 

increased levels of neuropeptide Y and, given that neuroproliferation is one crucial factor 

to prevent and/or overcome neurodegeneration, the effect of TTR on the hippocampus and 

SVZ was assessed. The number of proliferating cells in the hippocampal DG was not 

different between WT and TTR KO littermates (Nunes et al., 2009b) a similar result was 

observed in the SVZ regarding the proliferative cell population. To control for the quality 

of the BrdU staining using our protocol, the small intestine of each mice was processed 

similarly for BrdU immunohistochemistry. In all the animals analysed, numerous rapidly 

proliferating cells were observerd (figure 5). 
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Figure 5 – BrdU immunohistochemistry in mouse intestine cells. Photomicrographs of BrdU-positive 
cells in intestinal cells (arrows). Scale bar = 50 μm. 

 

In summary, despite their high levels of NPY in the brain, TTR KO mice do not 

display increased neuroproliferation. 
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DISCUSSION 

NPY role in the control of bone mass is not consensual. Until now, NPY expression 

was only detected in bone marrow cells, including megakaryocytes (Ericsson et al., 1987). 

Our results show that PAM, as well as NPY, are expressed both in BMSCs and BMSCs 

undergoing osteoblastic differentiation (Nunes et al., 2009a). Moreover, our work also 

shows PAM expression in megakaryocytes, chondrocytes, osteoblasts and osteocytes. 

Nunes et al. (2009a) demonstrated that TTR KO bone tissue displays increased 

amidated NPY levels, when compared to WT, further validating the expression of this 

neuropeptide in bone cells. In theoretical terms, the major TTR ligands, T4 and retinol 

could be responsible, at least in part, for the bone phenotype observed in TTR KO mice. 

Retinol deficiency is known to increase bone mineral density (Navia and Harris, 1980); 

additionally, retinoic acid inhibits osteogenic differentiation of bone marrow stromal cells 

(Takahashi et al., 2008; Wang et al., 2008). Despite the fact that TTR KO mice have 

retinol plasma levels below the level of detection (Grouzmann et al., 1992), symptoms of 

vitamin A deficiency are absent in these animals. In agreement, their total retinol tissue 

levels are not significantly different from WT mice (Wei et al., 1995). Moreover, retinoic 

acid plasma levels are 2-3-fold higher in TTR KO mice, probably compensating their low 

retinol levels (Wei et al., 1995). Taking the above into account, it is highly unlikely that 

having normal retinol levels in tissues and increased retinoic acid in the plasma, an 

impairment in retinol homeostasis would be responsible for the increased bone mineral 

density in TTR KO mice. Regarding thyroid hormones, it is well described that 

hyperthyroidism in adult patients leads to decreased bone mineral density (Karga et al., 

2004). As expected, both total T4 and T3 serum levels are decreased in TTR KO mice 

(Episkopou et al., 1993; Grouzmann et al., 1992). However, similarly to what is described 

above for retinol, this decrease is unrelated to symptoms of hypothyroidism or thyroid 

gland abnormalities (Palha et al., 1994). Again, in terms of tissue content, TTR KO mice 

present no differences in T4 levels when compared to WT mice (Palha et al., 2000; Palha et 

al., 1997), probably given the high free T4 serum pool in the TTR KOs (Palha et al., 1994), 

which might explain their euthyroid status. Such an euthyroid status is essential for normal 

skeletal development and maintenance and therefore it is hard to envisage that the bone 

phenotype of TTR KO mice would be related to thyroid hormones. 
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It is additionally possible that in TTR KO mice, as a consequence of PAM 

overexpression, increased levels of other amidated neuropeptides may produce some 

complexity. In this respect, although contradictory results have been reported for the action 

in bone of some amidated neuropeptides, such as substance P, others, such as pancreatic 

polypeptide and calcitonin gene-related peptide have been  described as stimulating the 

differentiation of an osteoblastic cell line (Kingery et al., 2003) or increasing the number of 

bone colonies formed from MSC in vitro (Hosaka et al., 2008), similarly to what is here 

reported in the absence of TTR. 

It is noteworthy that the increased NPY levels in TTR KOs are unrelated to increased 

NPY mRNA expression and result from increased processing and amidation by PAM, 

which is upregulated in TTR KO animals. In fact, although TTR is not expressed in 

BMSCs, PAM expression is increased in TTR KO BMSCs, suggesting that TTR KO 

osteoblasts display an intrinsic augmented PAM expression in relation to WT cells, as a 

consequence of their physiological TTR-free environment. A similar finding was reported 

in TTR KO neurons (similarly to BMSCs, neurons lack TTR expression) as these cells 

were also shown to display an intrinsic decreased neurite outgrowth, as a consequence of 

their physiological TTR-free environment (Fleming et al., 2007). 

TTR KO mice, an additional model displaying increased NPY levels, have an 

increased cancellous bone mass phenotype (Nunes et al., 2009a) in agreement with the 

NPY Y2 receptor KO mice and mice lacking leptin, further suggesting that increased NPY 

content might be related to increased cancellous bone mass. Despite all the concerns 

discussed above as to the use of TTR KO mice as a model of increased NPY, the big 

advantage of these animals over other NPY overexpressor models is that, in addition to the 

increased NPY levels, leptin is not altered (Marques et al., 2007), excluding its interference 

in the bone phenotype observed. 

Based on our observations, and given the neuroproliferative role of NPY (Hansel et 

al., 2001; Howell et al., 2005), the increased NPY levels observed in TTR KO mice are not 

related to an increase in the number of proliferating cells in the SVZ, as previously 

reported (Richardson et al., 2007) nor in the hippocampus.  In this respect, it is possible 

that, in addition to the increased amidated NPY levels detected in the CSF and 

hippocampus of TTR KO mice, other systems are also changed, which could introduce 

some complexity and mask NPY proliferative effect. 
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In summary, our findings provide evidence that increased NPY expression in bone 

cells is related to increased levels of PAM expression and regulation of osteoblastic 

differentiation. Moreover, TTR KO mice, displaying a NPY overexpressor phenotype, 

present increased bone mass phenotype. However, in this model, no increase in 

neuroproliferating cells was observed suggesting that the neuroproliferative role of NPY 

should be regarded with caution. 
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Conclusions 

CONCLUSIONS 

In this work we aimed to identify a putative role for TTR in the biology of the 

peripheral nerve and bone. Although TTR KO sciatic nerves were similar to WT under 

physiological conditions, the lack of TTR was related to compromised retrograde transport 

and lead to a delay in nerve regeneration after injury. This phenotype could be reversed 

either with direct delivery of TTR (in a laminin-containing gel) or with local TTR 

expression in the nerve (in the Thy1.2-TTRxTTR KO mice). In the present work we did 

not find differences in the neuromuscular junctions of TTR KO mice that could underlie 

their sensorimotor impairment, suggesting that the motor discoordination of TTR KO mice 

might be related to molecular mechanisms not yet disclosed. To investigate the mechanism 

leading to a slower regeneration of TTR KO mice, the involvement of megalin, a receptor 

implicated in the internalization of TTR in the nerve, was investigated. In vivo, megalin-

mediated TTR uptake was shown to be necessary for TTR activity as a regeneration 

enhancer. 

Associated to the lack of TTR, TTR KO mice present increased PAM and NPY 

levels both in the sciatic nerve and bone. The higher expression of this enzyme and 

neuropeptide content in various bone cells is related to an increase in bone mass, as a 

consequence of the higher levels detected during osteoblast differentiation. In this model, 

we did not detect an increase in neuroproliferating cells, despite the neuroproliferative role 

of NPY. 

In conclusion, this work contributed to clarify the role of TTR in peripheral nerve 

regeneration and the consequences of TTR involvement in neuropeptide maturation in the 

bone and brain. 
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