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Abstract  

 

Chromosome segregation during mitosis requires the activity of the anaphase-

promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that targets critical cell 

cycle regulators for degradation. Cell division cycle 20 (CDC20) is a crucial protein 

responsible for APC/C substrate recognition, namely securin and cyclin B, thereby 

allowing for triggering mitosis exit at the metaphase to anaphase transition. 

Overexpression of CDC20 protein was observed in several cancer types, including Oral 

Squamous Cell Carcinoma (OSCC). However, the clinical significance of CDC20 

expression in OSCC patients has not been studied.    

The present study aimed to analyze the CDC20 protein expression in tissues of 

patients with OSCC, relate them to clinicopathological characteristics and evaluate 

CDC20 potential as a prognostic biomarker and as a therapeutical target. Using tissue 

microarray technology, CDC20 expression was analyzed in 65 primary OSCC tissues 

by immunohistochemistry. Statistical analysis was performed to evaluate the 

clinicopathological and prognostic significance of CDC20 expression in OSCC. In order 

to evaluate the potential of CDC20 as a therapeutical target, interference RNA 

technique was used for CDC20 depletion and immunofluorescence technique was used 

to analyze the resultant phenotype.  

Our results revealed that of the 65 cases of patients with OSCC studied, 37 

(56.9%) showed high CDC20 protein expression and importantly, in univariable 

analysis, OSCC patients with higher CDC20 protein expression showed significantly 

shorter cancer-specific survival rate (P = 0.018). Multivariable analysis identified high 

CDC20 expression as an independent prognostic factor (P = 0.032). Therefore, high 

CDC20 expression is associated with poor prognosis in OSCC and may be used to 

identify high-risk OSCC patients. In HeLa cell line, the depletion of CDC20 gene 

expression led to an increase in the number of cells arrested in mitosis with condensed 

chromosomes and cell death, indicating that CDC20 may be a good target for OSCC 

treatment. 
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Resumo 

 

A segregação dos cromossomas durante a mitose, requer a atividade de uma 

ubiquitina ligase E3, o complexo promotor da anafase/ciclossoma (APC/C), que 

encaminha importantes proteínas reguladoras do ciclo celular para a degradação. Cell 

division cycle 20 (CDC20) é uma proteina crucial responsável pelo reconhecimento de 

substratos pelo APC/C, nomeadamente a securina e a ciclina B,  permitindo a transição 

de metafase para anafase e, consequente, a saída de mitose. Uma sobre-expressão da 

proteína CDC20 é observada em diversos tipos de cancro, incluindo o carcinoma oral de 

células escamosas (OSCC). No entanto, o significado clínico da expressão de CDC20 

em pacientes com OSCC ainda não foi estudado.  

O presente estudo, teve como objetivo analisar a expressão da proteína CDC20 

em tecidos de pacientes com OSCC, relacioná-los com características clínicopatológicas 

e avaliar a CDC20 como potencial biomarcador de prognóstico e como alvo terapêutico. 

Usando a tecnologia de microarray de tecidos, analisamos a expressão de CDC20 em 65 

tecidos primários de OSCC por imuno-histoquímica.  A análise estatística foi realizada 

para avaliar o significado clínicopatológico e prognóstico da expressão de CDC20 em 

OSCC. De modo a avaliar o potencial da CDC20 como alvo terapêutico, foi utilizada a 

técnica de RNA de interferência para promover a sua depleção e foi utilizada a técnica 

de imunofluorescência para analizar o fenótipo resultante.  

Os nossos resultados revelaram que dos 65 casos estudados de pacientes com 

OSCC, 37 (56,9%) apresentaram uma elevada expressão da proteína CDC20. Não foi 

verificada nenhuma correlação entre a expressão de CDC20 e nenhuma das 

características clínicopatológicas. No entanto, na análise univariada, os pacientes com 

tumores com elevada expressão da proteína CDC20 mostraram significativamente uma 

menor taxa de sobrevivência (P = 0,018). A análise multivariada identificou a elevada 

expressão de CDC20 como um fator de prognóstico independente (P = 0,032). A 

elevada expressão de CDC20 está associada a um mau prognóstico em OSCC e poderá 

ser usada para identificar pacientes com tumores de alto risco. Na linha celular HeLa, a 

depleção da expressão da proteína CDC20 revelou um aumento de células paradas em 

mitose com cromossomas condensados e morte celular, indicando que a CDC20 poderá 

ser um bom alvo terapêutico para o tratamento do OSCC. 

 

 



 

XI 
 

Abbreviations  

 

o APC/C: anaphase complex 

promotor/cyclosome  

o BSA: bovine serum albumin  

o Bub: budding uninhibited by 

benzimidazole   

o BubR: bub1-related protein    

o ºC: degree celsius 

o CDC20: cell division cycle 

protein 20 

o Cdks: cyclin-dependent kinases 

o CENP-E: centromere–associated 

protein E 

o CO2: carbbone dioxide 

o CSS: cancer-specific survival 

o CTR: control  

o DAB: 3,3'-diaminobenzidine  

o DAPI: 4’, 6-diamidino-2-

phenylindole  

o D-MEM: dulbecco’s modified  

eagle medium   

o DMSO: dimethylsulfoxide  

o DNA: deoxyribonucleic acid 

o EDTA: 

ethylenediaminetetraacetic acid 

o FBS: fetal bovine serum 

o HCl: hydrogen chloride 

o H2O2: hydrogen peroxide  

o HRP: horseradish peroxidase 

o KCl: potassium chloride 

o KDa: kilodalton 

o K2HPO4: dipotassium  

phosphate 

o LI: labeling index 

o M: molar (mol dm
-3

) 

o Mad: mitotic arrest deficient  

o MCC: mitotic checkpoint 

complex 

o µg: micrograms 

o µl: microlitres 

o ml: millilitres 

o mM: millimolar 

o mm: milimeters  

o nm: nanometer 

o MPF: mitosis promotor factor 

o MPS1: monopolar spindle 1 

o MTAs: microtubule-targeting 

agents 

o MTOCs: microtubule organizing 

centers   

o NaCl: sodium chloride 

o NaHPO4: sodium phosphate 

o OSCC: oral squamous cell 

carcinoma 

o PFA: paraformaldehyde 

o PSA: ammonium persulfate 

o PBS: phosphate buffered saline 

o PBS-T: PBS + Tween  

o Rb: retinoblastoma protein 

o RFS: recurrence-free survival 

o RNA: ribonucleic acid 

o RNAi: interference RNA  

o rpm: rotations per minute 

o SAC: spindle assembly 

checkpoint 

o SDS: sodium dodecyl sulphate 

http://www.thefreedictionary.com/potassium+chloride
http://www.thefreedictionary.com/sodium+chloride


 

XII 
 

o SDS-PAGE: sodium dodecyl 

sulfate – polyacrylamide gel 

electrophoresis  

o siRNA: small interfering RNA 

o TBS: tris-buffered saline  

o TBS-T: TBS + Tween 20  

o TEMED: N,N,N’,N’- 

tetramethylethylenediamine 

Tris: Tris-(hydroxymethy) 

aminemeth 

o TMA: tissue microarray 

 



 

Page 1 of 53 
 

Introdução 
 

 

 

 

 

 

 

 

 

 

  

Introduction 



 

Page 2 of 53 
 

Cancer is one of the scariest diseases that affect people worldwide, independently of 

age or gender, and nobody is safe from this illness. The traditional therapies are painful 

with many side effects and most of the affected have low overall survival, so new 

therapies are urgently needed. Every day, scientists all over the world try to find the best 

therapy but this malignity is so complex that makes it hard to do so.    

In the last decades, the cell cycle and its mechanisms have been studied in large 

extension due to its implication in several important processes such as growth, 

proliferation, regeneration and carcinogenesis. The new goal for cancer therapy is 

targeting the proliferative capacity of cells. It has been proposed that targeting mitosis is 

an efficient strategy [5]. Specifically, the spindle assembly checkpoint (SAC) has 

recently been suggested as a promising anti-cancer target [6]. Therefore, an exhaustive 

understanding of the biological and molecular phenomena that characterize mitosis can 

be a start point on therapy personalization, being for this reason, a currently active target 

of investigation. In this context, the present work focuses on oral squamous cell 

carcinoma, considered a worldwide health concern, in which cells frequently exhibit 

aneuploidy, suggesting defects in spindle assembly checkpoint. 

The following section contextualize the work presented in this thesis, starting with a 

brief description of the cell cycle and the two major stages that characterize it, the 

interphase and mitosis, as well as its regulation and control mechanisms. Subsequently, 

concepts and mechanisms related to the progression of mitosis are revised, focusing on 

the mechanism of spindle assembly checkpoint and some defects around this process. 

Lastly, a brief review is made on the currently known aspects of OSCC and CDC20 

expression and behavior on this disease.  

  

1. The cell cycle 

The cell cycle is an essential and balanced process that allows the reproduction and 

development of all living organisms. It includes an ordered sequence of discrete stages 

controlled by complex molecular interactions to produce two genetically equal daughter 

cells [7, 8]. In eukaryotic cells, it consists of two major events in a temporally regulated 

fashion: DNA synthesis (Interphase) and the chromosome segregation (Mitosis), 

culminating in two completely individualized cells, a phenomenon named cytokinesis.  

The interphase represents the most part of the cell cycle time comprising orderly 

transitions from G1, S to G2 phase. The G1 phase corresponds to the gap between 

mitosis ending and beginning of DNA synthesis [9]. During this phase, the cell is 
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sensitive to extra and intercellular signals which determine the cell fate, whether to 

divide itself or to remain in quiescence stage (G0 phase). Non-dividing cells or cells 

unable to enter the cell cycle or in a temporarily arrest state, remain in G0 phase. Once 

initiated the cell progression, the cell grows and prepares for DNA replication on the 

subsequent phase, the S phase [10-12]. Afterwards, on G2 phase, the cell grows 

continuously and essential proteins and enzymes are synthesized for genomic separation 

on mitosis [2, 13-15]. 

 

2. Mitosis   

Comparatively to interphase, mitosis requires much less time to occur and ensures 

accurate transmission of genetic inheritance, as well as one centrosome and cellular 

organelles into each daughter cell, making it the most critical event of the cell cycle [16, 

17]. The correct genetic material transmission during mitosis depends on efficient 

execution of two previous events during interphase: the replication of chromosomal 

DNA and centrosome duplication [16, 18]. Classically, mitosis can be divided into five 

subphases – prophase, prometaphase, metaphase, anaphase and telophase – that ends 

with cell division (cytokinesis).   

At prophase, the chromatin condensation begins and the replicated centrosomes 

move towards the opposite poles of the cell. The centrosomes have the ability to 

nucleate and organize microtubules and, for this reason, they are known as the primary 

microtubule organizing centers (MTOCs), in higher eukaryotic cells [19]. The 

prometaphase, an extremely dynamic cell cycle phase, is initiated by nuclear envelope 

breakdown and chromosomes dispersion into the cytoplasm. The chromosomes include 

specific constriction regions called centromere that provides the foundation 

for kinetochore assembly and these, in turn, form a dynamic interface with the 

microtubules from the mitotic spindle [20]. This way, the kinetochore is a core 

multiprotein structure, that mediates chromosomes attachment to the mitotic spindle and 

the monitoring of those attachments, chromosome transportation to spindle poles and 

arrest of cell cycle if defects are detected, through the initiation of a signaling 

checkpoint pathway [18]. After nuclear envelope breakdown is completed, each 

chromosome initiates the biorientation process and moves to the equatorial plate 

through microtubules that grow and shorten by association and disassociation of α/β-

tubulin heterodimers, respectively [21].   
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During the kinetochore-microtubules attachment process, chromosomes initially 

become mono-oriented (monotelic attachment) by one sister kinetochore and moves, 

through microtubules, toward one spindle pole and they are not under tension (figure 1 

A). Subsequently, the other sister kinetochore is captured by microtubules from the 

opposite pole and the chromosome becomes bi-oriented (amphitelic attachment) in 

equatorial zone, as exemplified in figure 1 B [18, 22, 23]. The tension developed across 

the paired kinetochores pulls the sister chromatids toward two opposite poles [24]. On 

metaphase all chromosomes must have proper bipolar attachment and be correctly 

aligned on the metaphase plate. Once bi-orientation of all chromosomes is achieved, the 

cell enters anaphase. Sister chromatid cohesion is lost by centromere disorganization 

and spindle elongation, resulting in separation of sister chromatids to opposite poles 

[17]. When chromosome separation is completed, nuclear envelope is reorganized and 

chromosomes decondense into their interphase conformations on telophase. Finally, in 

A B 

Figure 1: Kinetochore-microtubule interactions. A: during prometaphase, one sister 

chromatid is attached to microtubule from only one spindle pole (monotelic attachment) 

and a wait signal is generated. B: at metaphase, both sister chromatids become attached 

to microtubules from both spindle pole (amphitelic attachment) with the appropriate 

tension [3] 
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cytokinesis, a contracting ring composed of actin-myosin cleaves the cytoplasm and 

originates two daughter cells [9, 12]. These processes are exemplified in figure 2.   

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Representation of mitotic phases. At the end of prophase the chromosomes 

are condensed and the matured centrosomes move towards the opposite poles. During 

the prometaphase the kinetochores are captured by microtubules from mitotic spindle. At 

metaphase the chromosomes must be properly aligned at metaphase plate to allow sister-

chromatid separation in anaphase. In telophase nucleus division occurs and is followed 

by two daughter cells’ formation in cytokinesis [2]. 
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3. Cell cycle regulation  

Each phase of the cell cycle is executed during a precise predetermined time which 

provides high fidelity, otherwise it can lead to aneuploidy, an imbalance on 

chromosome number, or genetic instability. The cyclin-dependent protein kinases (cdks) 

are the regulatory proteins involved in this process [10, 16]. They are a family of 

serine/threonine proteins that act at precise points of the cell cycle and regulate the 

activity of specific proteins through phosphorylation., they require a cyclin for their 

activation [14] [25]. As illustrated in figure 3, they are associated with their 

correspondent cyclins during the different phases of cell cycle, namely G1 (cyclin D and 

E), S phase (cyclins A) and mitosis (cyclin A and B). The cyclins levels are changed 

periodically during the cell cycle [26], therefore, the regulation of the concentration of 

cyclins determines the activity of Cdks. Cell cycle progression depends on the balance 

between the different cyclin-CDK complexes [2]. 

When the cell fulfils the requisites to exit from the quiescence stage to proceed in 

the cell cycle, cyclin D is the first cyclin to be expressed during the presence of growth 

factor stimulation. Cyclin D, in association with Cdk 4 and Cdk 6, enters the nucleus 

and contributes for retinoblastoma protein (pRb) phosphorylation. This stimulates the 

activation of the E2F family of transcription factors and the transcription of 

fundamental proteins essential for G1 and S phase. Afterwards, the cyclin E associated 

to Cdk 2 is responsible for transition from G1 to S phase supporting DNA replication 

regulation  [2]. Cyclin A is expressed immediately following cyclin E and, in 

association with Cdk2, becomes essential during S phase. It is important for initiation 

and completion of DNA replication, as well as to ensure that this phenomenon occurs 

only once in each cell cycle. Its levels remain high until the onset of mitosis to 

contribute to chromosome condensation [27]. The progression through the G2 phase 

and entry into mitosis is mediated by Cdk1-ciclina B complex named “mitosis 

promoting factor” (MPF). In mitosis, MPF promotes nuclear and cytoplasmic changes 

such as chromosome condensation, nuclear envelope breakdown, fragmentation of 

Golgi apparatus and spindle formation [2].  

When cyclins have completed their function in the cell cycle, they must be 

degraded by the 26S proteosome. Cyclin B and A destruction, during mitosis, is 

essential to promote cell return to interphase and the possibility of a new cell cycle [26]. 
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4. The spindle assembly checkpoint 

The coordination between the different phases of the cell cycle and the assurance 

that each phase is performed in the right order is assured by specific checkpoints that 

are specialized control points. These checkpoints prevent the passage to the next phase 

until the events of the last one are properly completed without errors [2]. Globally, their 

role is to detect unreplicated or damaged DNA across G1, S and G2 phase and 

chromosome misalignment in mitosis. In the presence of an error, the cell cycle is 

arrested or delayed by these checkpoints allowing time to correct the mistake. However, 

if the mistake is irremediable, the cell is committed to apoptosis [28].  

For instance, in case of DNA damage during G1 phase, the cell is arrested by the 

action of p53 protein that allows p21 protein transcription. Consequently, p21 will 

Figure 3: Cell cycle regulation by cyclin-dependent protein kinases (Cdks). 

Schematic representation of cdks involved in progression of the cell cycle. The cyclin 

D-Cdk4/6 complex controls the cell cycle entry, the cyclin E-Cdk2 complex promotes 

the initiation of DNA replication, the cyclin A-Cdk2 complex stimulates DNA 

replication and lastly, the cyclin B-cdk1 complex is essential for entry and progress of 

mitosis (Adapted from [4]).      
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inhibit the cyclin/Cdk complex activity preventing pRb phosphorylation, which remains 

bound to E2F and cell is not able to proceed to S phase [29]. In G2 phase, if DNA 

condensation or integrity isn’t complete, a checkpoint is activated and the Chfr protein 

is free to phosphorylate cdc25 protein, promoting its inhibition. This way, cdc25 is not 

able to activate MPF, resulting in cell arrest in G2 [30, 31].      

The spindle assembly checkpoint (SAC) is a crucial surveillance mechanism with a 

complex signaling cascade continuously active that is in charge for the control of 

mitosis. It monitors the kinetochore-microtubule interactions and delays the anaphase 

onset until all chromosomes are properly attached to microtubules from mitotic spindle, 

bi-oriented and aligned in metaphase plate, ensuring an equal segregation of the genome 

into each daughter cell [3, 32].  

 

4.1 Molecular pathway of the SAC 

The molecular pathway of the SAC, that promotes an inhibitory signal to prevent 

premature sister-chromatid separation, involves the function of highly conserved 

proteins, such as Bub1, BubR1, Bub3, Mad1, and Mad2 representing the bona fide SAC 

proteins. The Mad (mitotic arrest deficient) and Bub (budding uninhibited by 

benzimidazole) proteins families were first identified by genetic screens  in budding 

yeast [33]. These proteins accumulate at kinetochores of chromosomes that are not bi-

oriented preventing premature chromosome separation. MPS1 (monopolar spindle 1) 

also plays an important role in the SAC. Homologues for these proteins have been 

identified in mammals and have been proven to share a high degree of both sequence 

and functional homology with their yeast counterparts [33, 34].   

Other SAC proteins were identified in higher eukaryotes include the Aurora kinase 

B, the centromere–associated protein E (CENP-E), dynein and the Zw10-Rod-zwilch 

protein complex. Aurora kinase B activity is important for kinetochores that are not 

under the appropriate tension, that normally is achieved by forces from bipolar 

attachments [17]. In turn, the CENP-E regulates the SAC by acting on BuBR1 and is 

essential for kinetochore microtubule attachments. The dynein is responsible for 

movement toward the (−) end of microtubules and the Zw10-Rod-zwilch protein 

complex interacts with it [12].     

The main target of SAC is the cell division cycle 20 homolog (CDC20) protein, an 

activator of the anaphase-promoting complex/cyclosome (APC/C). This complex is a 

multi-subunit E3 ubiquitin ligase that targets proteins for degradation that are essential 

http://www.ncbi.nlm.nih.gov/books/n/mcb/A7315/def-item/A7648/


 

Page 9 of 53 
 

for anaphase onset [33, 35]. As long as there are improperly attached or unattached 

chromosomes, the SAC will be active and an inhibitory complex will be generated, 

called “mitotic checkpoint complex” (MCC) that comprises the SAC Mad2, Bub3, 

Bub1, BubR1 proteins and the mitotic exit regulatory protein CDC20. This way CDC20 

is sequestered and prevented from activating the APC/C [36-39] (figure 4A).  

Once all chromosomes become aligned at the metaphase plate, the MCC complex 

disassembles and SAC is silenced. CDC20 can then bind and activate the APC/C which 

targets securin and cyclin B for proteolysis by the 26S proteosome [40]. Destruction of 

securin leads to release and activation of separase which cleaves Scc1, one important 

component of the cohesin complex holding sister-chromatids together, resulting in sister 

chromatid separation and anaphase onset [41, 42]. Cyclin B degradation promotes exit 

from mitosis into the subsequent interphase by inactivation of cyclin-dependent kinase 1 

(Cdk1) [36, 38, 43] (figure 4B).  
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A B 

Figure 4: Molecular pathway of spindle assembly checkpoint (SAC). A: The presence 

of unattached or improperly attached chromosomes leads to SAC activation. An inhibitory 

signal is generated by the mitotic checkpoint complex (MCC) comprised by BubR1, Bub3 

and Mad2. CDC20 is sequestered and the APC/C remains inactive preventing securin and 

cyclin B degradation and the cycle is arrested. B: When all chromosomes are properly 

aligned in metaphase plate the SAC is silenced. CDC20 is free to bind and activate the 

APC/C that targets securin and cyclin B to proteolysis. Securin degradation leads to 

separase activation and sister-chromatid separation. Cyclin B degradation results in 

mitotic exit [1]. 
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4.2 SAC defects in cancer 

 Nowadays, it is acknowledged the presence of high frequency of genetic instability 

in cancer. This genetic instability can result in aneuploidy that is defined by the gain or 

loss of chromosomes caused by defects in chromosome partitioning through mitosis and 

it is a distinctive feature in several cancer types, mainly in most solid tumors [44, 45]. In 

normal cells, the process across segregation of genetic material to daughter cells has a 

low error rate due essentially to the high fidelity of SAC. Nevertheless, in tumor cells 

this surveillance mechanism is mostly compromised and it has been suggested as 

aneuploidy cause [17, 44]. This is expected because if the SAC is weakened, the cells 

can eventually proceed to anaphase with one or more misaligned chromosomes which 

leads to missegregation and consequently to aneuploidy [46, 47], as shown in figure 5. 

It has also been suggested that cells with a weakened SAC have higher carcinogenic 

potential than cells with an effective SAC [48]. Although SAC genes mutations are rare, 

the detection of changes in the expression levels of SAC genes is very frequent in tumor 

cells [34, 49].  
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Many studies were carried out in order to establish the relationship between SAC 

defects and tumor development. In some colorectal cancer cell lines, heterozygous 

mutations were identified in Bub1 and BubR1 [50] and also seen in diverse B cell 

lymphomas [51]. Likewise, mutations in the Mad2-enconding gene were found in breast 

and gastric cancer cell lines [52]. Mutations in Mad1L1 gene were reported in 44 cell 

lines and in 133 primary cancer samples [53]. Moreover, it was reported that a point 

mutation in the hBUB1 gene suggests the hypothesis that alteration of mitotic 

checkpoint genes is involved in the development of primary lung cancers [54].  

However, in several tumors where genetic instability was reported, mutations were 

not detected in any SAC gene, which strongly indicates that they may not play a central 

role on tumorigenesis. Nevertheless, changes in expression levels of these genes have 

already been found in numerous cancers such as breast, colorectal, ovarian, lung and 

Figure 5: A defective SAC can lead to aneuploidy. In normal cells with a competent 

SAC, the chromosome missegregation is prevented. In cell with a defective SAC, the 

residual checkpoint activity is sufficient to ensure the accuracy of chromosome 

segregation [1]. 
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oral cancer, among others [45, 55]. It has been shown in several studies that the 

complete deactivation of SAC is lethal [56]. Thus, the dysregulation of SAC, and not its 

complete ablation, is commonly seen in many cancers [56, 57].  

In mice with reduced BubR1 expression levels the incidence of tumor increased 

[58]; BubR1 haploinsufficiency in mice and the downregulation of this protein by 

interference RNA result in tumor development [59]. On the other hand, BubR1 

overexpression was found in hepatocellular [60] and squamous cell carcinomas [61]. 

Reduced Mad2 expression levels in mice demonstrated high incidence of lung 

tumors [33] and has been implicated in human hepatocellular carcinogenesis [62]; 

Furthermore, Mad2 knockdown by interference RNA in normal human fibroblasts and 

other cell lines leads to chromosome missegregation and mitotic catastrophe [57, 63] 

and, in a gastric cancer cell line, its depletion enhance drug resistance and cell 

proliferation [64]; In turn, Mad2 overexpression has been shown to promote genomic 

instability in cell cultures [65] and can initiate tumorigenesis [66].  

The overexpression of Bub1, Bub3 and BubR1 was reported in human gastric 

cancer [67] and recently, it has been shown that the Mad1 high expression levels lead to 

chromosomal instability and resistance to anti-microtubules drugs [68].  

Defective SAC signalling that is compatible with tumor cell survival appear to 

contribute to the development of aneuploidy, a crucial factor for tumor cell evolution.  

The existence of differences on SAC regulation between normal and tumor cells could 

be a potential strategy target to kill tumor cells without affecting normal cells [49]. 

 

5. Targeting the SAC as a cancer therapy strategy 

Nowadays, anti-cancer drugs include molecules that inhibit the hyperproliferation of 

tumor cells by targeting cell cycle and subsequent induction of apoptosis. The mitotic 

drugs in clinical use named microtubule-targeting agents (MTAs) such as microtubule-

stabilizing (taxanes) and microtubule-destabilizing drugs (vinca alkaloids), have been 

efficient in a wide range of cancer types for many years [69]. These two classes of drugs 

inhibit the microtubules’ dynamics, which is the key for the movement and alignment of 

chromosomes in the metaphase plate promoting the spindle assembly checkpoint 

activation, which leads to cell arrest and apoptosis [5, 6, 21]. Besides their benefit in 

cancer therapy by targeting actively dividing cells, they have undesirable side effects by 

disruption of important physiological pathways observed in normal cells. Neurological 

and hematological side effects are the most important. Drug resistance is also a common 
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problem. Moreover, tumor cells do not have an efficient SAC that fully respond to 

mitotic errors which compromises the complete effectiveness of MTAs. In this sense, 

there is active research for new mitotic drugs with higher specificity and fewer side 

effects [70-72].    

The current understanding of the SAC molecular pathway provides their use for 

strategy therapy design in cancer. Small molecule inhibitors against SAC proteins are 

already being developed [71]. For instance, interfering with Aurora B kinase results in 

98% reduction in tumor volume through decrease in viability of rapidly dividing cells in 

nude mice injected with human leukemia cells [72]. The inhibition of chromosome 

alignment and cytokinesis is the major phenotype for Aurora B kinase inhibition 

resulting in severe polyploidization. Several small molecule against this protein are 

already under development in clinical trials [73]. Moreover, patents of oligonucleotides 

or peptides against BubR1, Bub3 and Mad2 have already been approved [72], as well as 

against CENP-E, which results in a mitotic delay with misaligned chromosomes 

followed by apoptosis [74]. 

 

6. SAC components as cancer biomarkers  

In recent years, advances have been made in the efficiency of detection and efficacy 

of cancer treatment through the improving of the knowledge on biomarkers in cancer. 

These biomarkers provide a tool for measuring and evaluating normal biologic and 

pathogenic processes or pharmacologic responses to a therapeutic intervention [75]. 

Biomarkers are used with the aim of identifying high risk populations, diagnosing 

in early stages, selecting the best treatment and monitoring the response to treatment 

[75]. Some SAC components are seen as important biomarkers. For instance, a high 

BubR1 expression in gastric cancer cell lines is correlated significantly with DNA 

aneuploidy, tumor invasiveness, lymph node metastasis, liver metastasis and poor 

prognosis [76]. Furthermore, it has been showed recently that overexpression of Mad2 

predicts clinical outcome as a crucial prognostic factor in primary lung cancer patients 

[77]. The overexpression of Aurora B was found to be an effective predictor of 

aggressive epithelial ovarian carcinoma in terms of differentiation, metastasis and 

prognosis [78]. In addition, Aurora B expression has been associated increased with cell 

proliferation and poor prognosis in non-small cell lung carcinoma [79] and 

hepatocellular carcinoma [80].  
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Recently, CDC20 has also been seen as a biomarker in pancreatic ductal 

adenocarcinoma with an important role in disease tumorigenesis and progression [81] 

and, furthermore, it was identified as an independent prognostic factor in primary non-

small cell lung cancer patients [82]. 

The discovery of new biomarkers and the understanding of their relevance will be 

very important for an efficient disease diagnosis and, consequently, for the choice for 

the appropriated therapy, in order to benefit the patients [75].  

 

7. The oral cavity cancer and SAC  

Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer 

and represents a major world health problem with an incidence of more than 300,000 

cases annually [83]. It is acknowledged that oral cancer occurrence differs according to 

age, ethnic group, life habits and culture [84]. The Indian population shows the highest 

incidence and prevalence of this type of cancer because of the common habits of 

chewing tobacco, which, in parallel with alcohol, is the most important risk factor [85].  

OSCC shows a weak prognosis and high morbidity, with a 5-year survival rate of 

50% which has not changed significantly during the last decades. This low survival rate 

is due essentially to identification of lesions on advanced stage or the appearing of 

metastasis or tumor recurrence [86]. OSCC patients have a good prognosis and outcome 

if the diagnosis and treatment of the disease are made in an early stage, but this is 

difficult since the lesions are always asymptomatic. Only with the development of the 

disease the lesions became symptomatic because of the involvement of nerves [87]. 

Moreover, in an advanced stage, the quality of the patient’s life is compromised due to 

higher radio-, chemo- and surgical therapy that often lead to significant physical effects 

on patients [84].  

Like the main cancer types, OSCC also exhibits aneuploidy which suggests defects 

in spindle assembly checkpoint [83] [88]. Indeed, it is known that this malignity is 

associated with an overexpression of CDC20, as well as Bub1, BubR1 and Bub3 [89, 

90]. In addition, it was show that the aurora B expression is correlated with cell 

proliferation, histologic differentiation, and metastasis, and that BubR1 overexpression 

may be involved in progression of OSCC [61, 89].  

  

 

 



 

Page 16 of 53 
 

8. CDC20 expression in OSCC 

Cell division cycle 20 homolog (CDC20) is the main target of the branch of the 

SAC that interacts directly with the anaphase-promoting complex/cyclosome (APC/C), 

which triggers the degradation of cyclin B and securin resulting in anaphase initiation 

and mitosis progress. This protein is kept sequestered during prophase and metaphase 

by the mitotic checkpoint complex (MCC) to prevent premature exiting from mitosis, 

until the attachment of all kinetochores to their respective spindle poles. 

CDC20 has seven WD40 repeat regions at its C-terminus, forming a β-propeller 

structure that is specialized for protein-protein interaction. During the mitotic arrest in 

human cells, CDC20 is continuously synthesized and degraded with a half-life of 

around 30 minutes. Once CDC20 binds to APC/C complex, it becomes a substrate for 

ubiquitination and subsequent degradation, thus its levels are strongly controlled 

through equilibrium of translation and degradation. Moreover, a careful balance 

between the levels of CDC20, BubR1 and Mad2 proteins must be maintained for a 

functional SAC; some studies reported that changes in the ratio between CDC20 and 

BubR1/Mad2 result in SAC defects [91].  

Indeed, overexpression of CDC20 was observed in several cancer types, including 

tumor of the oral cavity [90], stomach [92], pancreas [81], lung [93] and brain 

(glioblastoma) [94].  

Interestingly, studies reporting overexpression of CDC20 in OSCC also suggested 

that such overexpression can deregulate APC/C activation and result in premature 

anaphase onset and aneuploidy, consistent with a role of CDC20 in oral tumorigenesis 

[90]. However, until nowadays, the clinical significance of CDC20 expression in OSCC 

patients has not been studied. 
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Aim of the study 

Oral squamous cell carcinoma (OSCC) is among the most common cancers 

worldwide and has a poor 5 year survival rate. Tools that can differentiate lesions with 

higher risk of conversion to malignancy compared to lesions with relatively lower risk 

are a promising therapeutic strategy for this malignity. Several genetic lesions have 

been implicated in oral cancer, including tumor suppressors like TP53 and RB, and 

oncogenes like cyclin family, EGFR, and ras. However, the molecular model of oral 

carcinogenesis remains to be elucidated. Therefore, further comprehension of the 

molecular basis of oral cancer is needed not only to understand its multi-step 

progression but also to supplant traditional markers and to develop potential therapeutic 

interventions.  

Like in many other tumours, the OSCC exhibit aneuploidy and it has been reported 

the presence of spindle assembly checkpoint (SAC) defects as a potential cause. The 

SAC ensures the correct execution of mitosis preventing genetic instability. CDC20 is 

responsible for the anaphase-promoting complex/cyclosome (APC/C) activation which 

is required for mitotic exit. This protein is the main target of the SAC and is sequestered 

to prevent premature exit from mitosis when the chromosomes are not properly attached 

to microtubules of the mitotic spindle and aligned at the metaphase plate.    

Given the role of CDC20 in mitotic exit, many studies were carried out in order to 

establish a causal connection between CDC20 expression deregulation and tumor 

development. Accordingly, overexpression of CDC20 was observed in several cancer 

types, including Oral Squamous Cell Carcinoma (OSCC). However, the clinical 

significance of CDC20 expression in OSCC patients has not been studied. Therefore, 

the aims of the present study were: i) to analyze CDC20 protein expression in tissues 

from patients with OSCC; ii) to relate CDC20 expression to OSCC clinicopathological 

characteristics; iii) to evaluate CDC20 potential as a prognostic biomarker; and iv) to 

evaluate CDC20 as a therapeutical target. 
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Material and Methods 
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Tissue microarray (TMA) construction 

 For tissue microarrays (TMA), tumor tissues from sixty five patients diagnosed and 

treated for primary OSCC at the Hospital de Santo António (HSA), Porto, Portugal, 

between 2000 and 2006, were included. Representative tumor areas were selected on 

haematoxylin and eosin-stained sections and marked on paraffin blocks. Three 2 mm 

cylindrical tissue cores were obtained from each selected specimen and transferred to a 

recipient paraffin block, using a microarray instrument (TMA Builder, Histopathology 

Ltd, Hungary). From each TMA block, 3-µm sections were cut and processed for 

immunohistochemistry. 

 

Immunohistochemistry 

 TMA slides were deparaffinized in xylene followed by antigen‐retrieval treatment 

with 0.01M citrate buffer (pH 6.0) in a 98°C water bath for 30 min. After blocking 

endogenous peroxidase with methanol containing 0.3% hydrogen peroxide (H2O2) for  

15 min, sections  were  incubated with  a blocking solution  made  of  0.4%  casein in 

tris-buffered saline  (TBS)  to  reduce nonspecific  binding.  Slides were incubated with 

anti-CDC20 mouse monoclonal primary antibody (clone p55 CDC (E-7); sc-13162, 

Santa Cruz Biotechnology, Santa Cruz, CA) at 1:50 dilution in TBS for 1 hour at room 

temperature in a humidified chamber. Slides were then washed in TBS, after which 

primary antibody was detected using a standard  peroxidase-labeled  dextran  polymer 

for visualization with 3,3’-diaminobenzidine (DAB) as  chromogen (NovoLinkTM 

Polymer  Detection  System; Novocastra, Leica Biosystems Newcastle  Ltd), according 

to the manufacturer’s instructions. Finally TMA sections were counterstained with 

Mayer’s haematoxylin. In each staining run, we used endothelial cells as positive 

control [94] and omission of primary antibody as negative control. 

 

Evaluation of immunohistochemistry  

 CDC20 expression was evaluated on the basis of the percentage of nuclear 

positivity for CDC20 protein and it was done independently by two different 

investigators. CDC20 labeling index (LI) was determined using the formula below: 

  

                    
              

                               
     

 



 

Page 20 of 53 
 

At least 150 nuclei were counted in each case. To determine the cut-off of CDC20 

protein expression, it was included ten cases of normal oral mucosa (buccal mucosa, 

and gengiva) within TMA. Their labeling index mean was 7.5±1.28 (range 5-9). 

According to this result, a cut-off of 10% was set as the threshold of positive cells with 

CDC20 expression. CDC20 expression was graded as negative (proportion of positive 

cells <10%) or positive (proportion of positive cells >10). 

 

Microscopy, image acquisition and processing 

 The images from immunohistochemistry assays were obtained with a 40x objective 

lens on a Nikon TE 2000-U microscope equipped with a DXM1200F digital camera 

through Nikon ACT-1 program. Photoshop CS5 (Adobe Microsystems, CA) was used 

to treat the final images.  

 

Statistical analysis 

 Data were statistically analyzed using IBM SPSS Statistics version 20.0 software 

(IBM Corporation, NY, US). The associations between the different clinicopathological 

characteristics and Cdc20 levels were analyzed by Chi-square test. The cancer-specific 

survival (CSS) and recurrence-free survival (RFS) were estimated by the Kaplan-Meier 

method and their prognostic effect was tested using the log-rank test. Variables with 

significant effects in the univariable analyses were entered into Cox regression model to 

investigate their independent predictive significance. P value of less than 0.05 was 

considered significant.  

 

Cell culture  

 The cell lines, HeLa (Human cervical carcinoma, Faculty of Pharmacy, University 

of Porto) and oral SCC25 (Squamous cell carcinoma, ATCC), were maintained at 37ºC 

in a humidified incubator (Hera Cell, Heraeus) with 5% of CO2 and grown in monolayer 

in T25 flask (Nunclon™ Δ  Surface) in DMEM (Dulbecco’s Modified Eagle’s Medium, 

GIBCO Invitrogen) and DMEM F12 medium (GIBCO Invitrogen), respectively. Both 

media were supplemented with 10% v/v of FBS (Fetal bovine serum, HyClone), 1% 

m/v of antibiotic-antimycotic (GIBCO Invitrogen) and 1% m/v of L-glutamine (GIBCO 

Invitrogen). DMEM F12 medium was also supplemented with hydrocortisone 

(40ng/mL, Sigma). At 80% confluence, cells were split into a new flask with fresh 

medium to avoid cell death due to lack of space or nutrients. For that purpose, the 
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medium was removed, the cell monolayer was washed with 2mL of phosphate-buffered 

saline PBS (pH 7.4: 137mM NaCl, 2.7mM KCl, 18mM K2HPO4, 100mM NaHPO4) and 

incubated with 1mL of trypsin-EDTA (Gibco™, Invitrogen Corporation) for 3-10 

minutes at 37ºC to promote detachment. Trypsin was then neutralized and cells were 

resuspended in warm medium. Cell density was determined by adding 30 µl of trypan 

blue solution to 30 µl of cell suspension and the cells were counted in a Neubauer 

chamber. Finally, the desired number of cells was transferred into a new flask with fresh 

medium and returned to the incubator.     

 

Cell freezing and thawing  

 The cell freezing began with the detachment of log phase cells by trypsin-EDTA 

and centrifugation for 5 minutes at 1000 rpm. After that, 1x10
6
 to 2x10

6
 cells were 

resuspended in 1mL freezing medium (DMEM with 5% v/v of DMSO or DMEM F 12 

with 10% v/v of DMSO) in a cryogenic vial and kept at - 80ºC in a recipient with 

isopropyl alcohol to allow a gradual cooling. After 24 hours, the vial was stored in 

liquid nitrogen.  

 For the thawing process, cryogenic vial from liquid nitrogen storage was quickly 

placed in a water bath at 37ºC for 1-2 minutes, and thawed cells were gently collected, 

put in a T25 flask containing warm medium, and kept in the incubator at 37ºC with 5% 

of CO2. After 24 hours, the culture medium was changed to a fresh medium in order to 

remove any traces of DMSO.  

 

Coating of glass coverslips with poly-L-lysine 

 The coverslips (22 x 22 mm, VWR) were covered with 1M HCL at 50-60ºC for 8-

16 hours. Afterwards, they were washed vigorously in deionized water and then in 95% 

ethanol and left to dry. After that, the coverslips were put into Petri dishes containing 

Poly-L-lysine (500µl/mL) solution. After 1 hour of agitation, poly-L-lysine was 

removed, the coverslips were washed in distilled water and bi-distilled water 5 times 

each and left to dry. At the end, the coverslips were kept in a Petri dish wrapped in 

parafilm.  

 

RNA Interference 

 HeLa and SCC25 cell lines were inoculated in a 6 wells plate at a density (number 

of cells per ml) of 0,03x10
6
 cells and 0,07x10

6
 cells in 1,5mL of culture medium with 
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5% of FBS. After 24 hours at 37ºC, two transfection reactions were prepared: 3µL of 

Oligofectamine with 15µl de Opti-MEM (Invitrogen) and 1µl of siRNA against Cdc20 

(Quiagen) with 184,4µl de Opti-MEM (Invitrogen). The reaction mixes were 

homogenized and left at room temperature for 30 minutes. Afterwards, the transfection 

solution was gently added drop by drop to the cell-containing wells and incubated at 

37ºC. The next day, the medium was changed to complete medium. 72 hours after the 

transfection, cells were processed for RNAi efficiency evaluation and phenotype 

analysis by immunofluorescence. 

 

Cytospin 

 The slides were assembled with a paper filter and a cuvette in a metal holder. The 

medium from the 6 wells plate after RNAi, with most mitotic cells, was collected into a 

falcon as well as the detached cells. cell density was determined in a Neubauer 

chamber. A final volume of 200 µl with 0.05x10
6
 and 0.06x10

6
 cells per ml in HeLa and 

SCC25, respectively, was placed in each cuvette with 1 drop of 3% BSA. The samples 

were then spun at 800 rpm for 3 min. After 2 hours in air drier, the cells were fixed with 

2% formaldehyde in PBS (1x) for 10 min and permeabilized with 0.1% of Triton X in 

PBS (1x) for 5 min (2 times). Finally, the slides were washed in PBS (1x) for 5 min and 

then mounted in Vectashield with DAPI (Sigma) at 0,5 µg/mL. 

 

Immunofluorescence 

 The cell lines HeLa and SCC25 were inoculated in a 6 wells plate at a density 

(number of cells por ml) of 0,03x10
6
 and 0,07x10

6
, respectively. Cells were fixed in 

freshly prepared paraformaldehyde 2% (v/v) (sigma) PBS, for 7 minutes at a room 

temperature. Then, they were washed three times for 5 minutes in PBS, and 

permeabilized with a solution of Triton X-100 0.2% in PBS during 7 minutes. After 

that, they were washed in PBST (PBS, 0.02% Tween) three times for 5 minutes each. 

Cells were blocked with 10% of FBS in PBST for 1 hour in a humidified chamber and 

then incubated with the primary antibody: rabbit anti-Cdc20 (1:1000, sigma) and mouse 

anti-α-tubulin (1:2500, Sigma). The coverslips were washed three times in PBST during 

5 minutes each and then were incubated with the secondary antibody with a dilution of 

1:1500 (anti-mouse and anti-rabbit conjugated with 488nm or 568nm Alexa Fluor; 

Molecular Probes). Finally the cover slips were washed two times in PBST and one in 

PBS and then assembled in 7µl of DAPI.  
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Protein extraction and quantification 

 The cell suspension with the grown media initially recovered from culture flask, as 

well as the detached cells, was centrifuged at 4ºC, for 5 minutes, at 4000 rpm. The pellet 

was quickly resuspended with 150µL of cold lysis buffer (pH 7,5: NaCl 50mM; Triton 

X-100 0,5% (v/v); EDTA.Na 1mM; cocktail of protease inhibitors - Sigma) and 

transferred to an eppendorf. Then, the suspension was passed several times through a 

syringe and the lysates remained on ice during 20 minutes. The lysates were then 

centrifuged at 13000 rpm for 5 minutes at 4ºC. 10µl of the supernatant was used to 

measure the protein concentration, and the rest of the sample was frozen at - 80ºC for 

western blotting assays. 

 Protein quantification is essential to ensure an equitable loading between the 

samples in electrophoresis gel and require a standard curve using the kit “BCATM 

Protein Assay Kit” (Pierce Biotechnology, Inc). According to the kit, the work reagent 

was prepared by mixing 50 parts of BCA Reagent A (sodium carbonate; sodium 

bicarbonate; bicindroninic acid and sodium tartrate in 0.1M sodium hydroxide) with 1 

part of BCA Reagent B (4% cupric sulfate). The protein samples to be quantified were 

diluted ten times in distilled water and its quantification was performed by 

spectrophotometric reading at 562 nm according to the instructions of the kit 

manufacturer. 

 

Western blotting 

 5µg of HeLa or SCC25 protein extracts were separated in SDS-PAGE (sodium 

dodecyl sulfate polyacrylamide gel electrophoresis) and processed for western blotting. 

The SDS-PAGE consisted in a 6% staking gel and a 10% separating gel comprised by 

polyacrylamide 30%, de-ionized water, 1.5 M Tris pH 8.8 (resolving gel), 1.0 M Tris 

pH 6.8 (stacking gel), PSA 10%, TEMED and SDS 10%. A Mini-PROTEAN 3 system 

(Bio-Rad Laboratories) was used for electrophoresis assays filed with running buffer 

(25mM Tris HCl, pH 8.3; 192 mM glycine; 0.1% (W/V) SDS) and run at constant 

voltage (200 V/gel), for 60 minutes. Afterwards, the proteins were transferred for 75 

minutes, at 200 V and 110 mA, to a nitrocellulose membrane (Amersham Biosciences) 

in transfer buffer (pH 8.3: Glycine 192mM, Tris 25mM, methanol 20% v/v) using a 

semi-dry system (Hoefer SemiPhor Transphor Unit, Amersham Biosciences). To 

confirm the efficiency of the transference process, the nitrocellulose membrane was 

counterstained with Ponceau S (Ponceau S 0,5%; TCA 5%). After that, the membrane 
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was washed in Tris-Buffered saline Tween-20 (TBST- Tris-HCL 20 mM, NaCl 137 

mM, 0,1% (v/v) Tween-20) and blocked with 5% milk solution in TBST during 1 hour 

in slow agitation. After blocking, the membrane was washed in 1% milk solution in 

TBST during 10 minutes and incubated with primary antibody (rabbit anti-cyclin B, 

1:4000, Sigma; mouse anti-actin, 1:2500, Santa Cruz Biotechnology) diluted in 1% milk 

solution with PBST, during 1 hour at room temperature. Finally, the membrane was 

incubated with the secondary antibody linked to HRP (horseradish peroxidase) diluted 

1:2000, preceded by membrane washing in 1% milk solution with PBST. After three 

washes in TBST during 10 minutes, the last step was the revelation after incubating the 

membrane with the ECL solution (Tris HCL 100mM pH 8.5, Coumaric acid 90mM, 

Luminol 250mM, H2O2 30% (v/v)) for 30 minutes.  

 The results were scanned using the Gel Doc XR densitometer (Bio-Rad) and 

analyzed by Quantity One 4.6.1 software (Bio-Rad).    

 

Microscopy, image acquisition and processing 

 The images from immunofluorescence were obtained using a Spinning-disk 

confocal microscope:(Axio Observer Z1, Zeiss), equipped with AxioCam MR3 camera. 

The images were acquired with 63x objective lens with the aid of image acquisition 

AxioVision 4.8.2, ImageJ version 1.44 (http://rsb.info.nih.gov/ij/) and finally processed 

using Photoshop CS5 software (Adobe Microsystems, CA).  

 

 

Results and discussion 
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1. CDC20 as a potential biomarker for OSCC    

   In order to analyze CDC20 expression in OSCC tissues, we performed 

immunohistochemistry assays in formalin-fixed human OSCC and microarrays in 

paraffin-embedded tissue. The results obtained from these assays were compared to 

normal tissues in the same conditions.  

Using Chi-square test, we analyzed the correlation between CDC20 expression and 

some of the OSCC clinicopathological features. Using Kaplan-Meier method, we 

analyzed whether CDC20 expression and other clinicopathological characteristics were 

correlated with Cancer-Specific Survival (CSS) and Recurrence-Free Survival (RFS). 

 

1.1 Evaluation of CDC20 expression in human OSCC tissues 

 Immunohistochemistry analysis was carried out in human OSCC tissues using anti-

CDC20 monoclonal mouse antibody to evaluate the extent and patterns of CDC20 

protein expression. In order to demonstrate the antibody specificity, we used a negative 

control with PBS instead of antibody, for which no CDC20 staining was observed, as 

expected.  

 The expression of CDC20 was observed as nuclear and cytoplasmic staining in 

both normal and tumor tissues and it was assessed and scored under light microscopy 

(Figure 1). The intensity of protein expression was not evaluated since it was uniform in 

most of the tissues. Normal oral mucosa tissue was used as a control, which showed 

CDC20 staining in its epithelial cells. 

 CDC20 expression was observed in all OSCC cases, with a mean labeling index of 

14.14±10.15 (range 2.4-50.1). The positive CDC20 staining of tumor cells was seen 

either in a random pattern or with greater distribution at the periphery of the tumor 

islands, which is considered to be an area of active cell division. As shown in Table 1, 

out of the 65 cases examined, 37 (56.9%) showed high-level of CDC20 expression, 

according to the cut-off value of 10%. The other 28 cases (43,1%) were not significantly 

different from the control. 
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Figure 6: CDC20 protein expression in oral squamous cell carcinoma (OSCC). 

CDC20 was detected by immunohistochemistry using monoclonal mouse anti-CDC20 

antibody; counterstaining was performed with haematoxylin. A: CDC20 staining in 

epithelial cells in normal oral mucosa, x400. B D: Low levels of CDC20 expression in 

OSCC, x100 and x400. C E: High levels of CDC20 expression in OSCC, x100 and 

x400. The scale bar is indicated at the left lower corner of each figure. 
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1.2 CDC20 expression and its correlation to clinicopathological parameters 

in OSCC 

 Having demonstrated that human OSCC tissues expressed high levels of the 

CDC20 protein, we performed a correlation analysis in an attempt to explore the 

clinicopathological significance of its expression. Therefore, in OSCC tissue samples, 

CDC20 protein expression was compared with patient gender and age; tumor location, 

size, stage, grade, margin, and N status; perineural permeation; and lymphatic invasion 

(Table 1).  

The median age of patients at the time of diagnosis was 61.97 years (range, 25–96 

years) and 78.5% of patients were men. Using the Chi-square test, we found no 

significant association between CDC20 expression and the clinicopathological 

characteristics listed on Table 1.  
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Table 1: Association between CDC20 expression and clinicopathological 

characteristics in patients with oral squamous cell carcinoma 

 

Factor 

 

N (%) 

Cdc20 

 

         Low                   High         p-valueb   

All cases  

65 (100%) 

 

28 (43,1%) 

 

37 (56.9%) 

 

 

Gender 

    Female 

    Male 

 

14 (21.5%) 

51 (78.5%) 

 

7 (50) 

21 (41.2) 

 

7 (50) 

30 (58.8) 

 

0.555 

Age 

    < 62 years 

    ≥ 62 years 

 

32 (43.8%) 

33 (60.6%) 

 

16 (46.9) 

13 (39.4) 

 

17 (53.1) 

20 (54.1) 

 

0.543 

Location 

    Floor of the mouth 

    Tongue 

    Buccal mucosa 

    Retromolar trigone 

    Hard palate 

    Gingiva 

 

9 (13.8%) 

21 (32.3%) 

10 (15.4%) 

10 (15.4%) 

8 (12.3%) 

7 (10.8%) 

 

2 (22.2) 

9 (42.9) 

5 (50) 

4 (40) 

6 (75) 

2 (28.6) 

 

7 (77.8) 

12 (57.1) 

5 (50) 

6 (60) 

2 (25) 

5 (71.4) 

 

 

 

0.451 

Tumor Size  

    T1 

    T2 

    T3 

    T4 

 

9 (13.8%) 

26 (40.0%) 

9 (13.8%) 

21 (32.3%) 

 

5 (55.6) 

10 (38.5) 

5 (55.6) 

8 (38.1) 

 

4 (44.4) 

16 (61.5) 

4 (44.4) 

13 (61.9) 

 

 

0.664 

N status 

   N0 

    N1 

    N2 

    N3 

 

35 (53.8%) 

11 (16.9%) 

15 (23.1%) 

4 (6.2%) 

 

15 (42.9) 

6 (54.5) 

5 (33.3) 

2 (50) 

 

20 (57.1) 

5 (45.4) 

10 (66.7) 

2 (50) 

 

 

0.741 

Stage 

    I 

    II 

    III 

    IV 

 

9 (13.8%) 

20 (30.8%) 

10 (15.4%) 

26 (40.0%) 

 

5 (55.6) 

8 (40) 

6 (60) 

9 (34.6) 

 

4 (44.4) 

12 (60) 

4 (40) 

17 (65.4) 

 

 

0.462 

Treatment 

    SG 

    SG+RT 

    CT+SG or RCT 

 

26 (40%) 

18 (27.7%) 

21 (32.2%) 

 

13 (50) 

8 (44.4) 

7 (33.3) 

 

13 (50) 

10 (55.6) 

14 (66.7) 

 

 

0.513 

Tumor Grade 

    G1 

    G2+G3 

 

37 (56.9%) 

28 (43.1%) 

 

18 (50) 

9 (32.1) 

 

18 (50) 

19 (67.9) 

 

0.151 

 

Margin statusa 

    Free of tumor 

    With tumor 

 

28 (58.3%) 

20 (41.7%) 

 

14 (50) 

9 (45) 

 

14 (50) 

11 (55) 

 

0.732 

Perineural permeation 

    absent 

    present 

 

58 (89.2%) 

7 (10.8%) 

 

27 (46.6) 

1 (14.3) 

 

31 (53.4) 

6 (85.7) 

 

0.103 

Lymphatic invasion 

    absent 

    present 

 

51 (78.5%) 

14 (21.5%) 

 

23 (45.1) 

5 (35.7) 

 

28 (54.9) 

9 (64.3) 

 

0.530 

a Not available in the 17 cases.  
b Chi-square test. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page 30 of 53 
 

1.3 CDC20 expression and prognostic significance in OSCC 

To further understand the clinical significance of CDC20 expression in OSCC, we 

studied its correlation with Cancer-Specific Survival (CSS) or Recurrence-Free Survival 

(RFS), in order to verify the potential of CDC20 as a prognostic marker.  

By the end of patient follow-up, 33 (50.8%) patients were alive without oral cancer, 

one patient (1.5%) was alive with oral cancer, and 31 (47.7%) had died as a result of 

oral cancer. The follow-up mean for all patients was 32.44±26.16 months and the 

follow-up mean for the surviving patients was 45.87±26.90 months. The cumulative 3-

year CSS was 52.3% and RFS was 45%.  

The clinicopathological characteristics and CDC20 expression variables were 

analyzed in univariable analysis using the Kaplan-Meier procedure, a method of 

estimating time-to-event models in the presence of censored cases, to see their influence 

on the survival of the patients with OSCC. The unvariable analysis showed that a low 

CSS (P=0.018) with short median survival periods (40 months) was more significantly 

associated with high CDC20 protein expression than with low CDC20 expression (68 

months) (Figure 7; Table 2). Among the clinicopathological characteristics, tumor size 

(P<0.001), N status (P=0.003), tumor stage (P<0.001), treatment modality (P<0.001), 

and histological grade (P=0.020) were statistically associated with a low CSS (Table 2). 

Additionally, as detailed in table 2, we observed a significant association between RFS 

and gender (P=0.001), tumor size (P=0.002), N status (P=0.001), tumor stage 

(P=0.004), and treatment modality (P=0.007).     

In order to investigate the independent effects of the variables with significant 

results in univariable analysis, we included them into multivariable Cox proportional 

hazards regression model (Tables 3 and 4). We found an independent prognostic value 

for CDC20 expression where patients with tumors expressing high levels of CDC20 had 

shown lower CSS than patients with tumors expressing low levels of CDC20 (P=0.032) 

(Table 3). 

We also found an independent prognostic value for tumor size (P = 0.007) 

correlated with lower CSS (Table 3). Despite CDC20 being correlated with poor 

prognosis, it is not correlated with RFS (Figure 8). For RFS, we found an independent 

prognostic value for N status (P = 0.001) and sex (P = 0.001).    

Taken together, these results indicate that, besides its previously suggested role in 

tumorigenesis [90], CDC20 might also be a prognostic marker in oral squamous cell 

carcinoma. Similarly, CDC20 overexpression has been reported as a poor prognostic 
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factor in primary non-small cell lung cancer [82] and pancreatic ductal adenocarcinoma 

[81], indicating that this might be a general feature in human cancers. 
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Table 2: Univariable analysis of cancer-specific and recurrence-free survival at 3 

years, according to clinicopathological characteristics and CDC20 expression in 

oral squamous cell carcinoma patients 

 

Factor 

 

N 

 

dead 

Cancer 

specific 

survivala 

 

P-valueb 

 

Nc 
 

recurrence 

Recurrence 

free 

survivala 

 

P-valueb 

Gender 

    Female 

    Male 

 

14 

51 

 

8 

23 

 

49 

53.8 

 

0.228 

 

12 

43 

 

10 

18 

 

25.0 

51.1 

 

0.001 

Age  

    <62 yrs 

    ≥62 yrs 

 

32 

33 

 

18 

13 

 

40.7 

63.6 

 

0.231 

 

25 

30 

 

15 

13 

 

31.5 

56.1 

 

0.283 

Location 

     Floor of the mouth 

    Tongue 

    Buccal mucosa  

    Retromolar trigone 

    Hard palate 

    Gingiva 

 

9 

21 

10 

10 

8 

7 

 

5 

9 

3 

6 

3 

5 

 

66.7 

60.3 

65 

28.6 

60 

28.6 

 

 

 

 

0.129 

 

9 

18 

9 

7 

7 

5 

 

7 

7 

2 

4 

4 

4 

 

22.2 

64.9 

66.7 

35.7 

42.9 

20 

 

 

 

 

0.108 

Tumor size 

    T1 

    T2 

    T3 

    T4 

 

9 

26 

9 

21 

 

1 

8 

5 

17 

 

85.7 

70.6 

30.5 

19.3 

 

 

<0.001 

 

9 

26 

8 

12 

 

4 

9 

5 

10 

 

62.5 

61.9 

30.0 

16.7 

 

 

0.002 

N status 

    0 

    1 

    2 

    3 

 

35 

11 

15 

4 

 

10 

6 

13 

2 

 

75.6 

19.4 

10.7 

50 

 

 

<0.001 

 

32 

10 

11 

2 

 

11 

7 

9 

1 

 

64.2 

18.0 

0 

50.0 

 

 

0.001 

Stage 

    I 

    II 

    III 

    IV 

 

9 

20 

10 

26 

 

1 

5 

5 

20 

 

85.7 

78.9 

33.3 

21.2 

 

 

<0.001 

 

9 

20 

9 

17 

 

4 

6 

5 

13 

 

62.5 

66.3 

34.6 

19.6 

 

 

0.004 

Treatment 

    SG 

    SG+RT 

    CT+SG or RCT 

 

26 

18 

21 

 

4 

11 

16 

 

91.7 

40.0 

18.9 

 

 

<0.001 

 

26 

18 

11 

 

7 

13 

8 

 

72.7 

23.8 

22.7 

 

 

0.007 

Tumor grade 

    G1 

    G2/G3 

 

37 

28 

 

12 

19 

 

65.8 

36.8 

 

0.020 

 

32 

23 

 

13 

15 

 

56.6 

30.4 

 

0.101 

Margin statusd 

    Free of tumor 

    With tumor 

 

28 

20 

 

9 

10 

 

75.7 

43.6 

 

 

0.222 

 

26 

20 

 

9 

13 

 

61.2 

30.0 

 

 

0.054 

Perineural 

permeation 

    Absent  

    Present 

 

 

58 

7 

 

 

26 

5 

 

 

55.4 

28.6 

 

 

0.126 

 

 

48 

7 

 

 

23 

5 

 

 

47.5 

28.6 

 

 

0.110 

Lymphatic invasion 

    Absent  

    Present 

 

51 

14 

 

25 

6 

 

52.7 

55.1 

 

0.864 

 

42 

13 

 

23 

5 

 

42.6 

61.5 

 

0.633 

CDC20 

    Low (0-9%) 

    High (10-100%) 

 

28 

37 

 

9 

22 

 

68.0 

40.2 

 

 0.018 

 

25 

30 

 

12 

16 

 

54 

37.7 

 

0.553 

aPercentage of cases without event at 3 years of follow-up (Kaplain Meier estimates of probability of survival). 
bLog-rank test. 
c Patients with persistence of the disease were excluded. 
d Information not available for every patient. 
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Figure 7: Univariable Kaplan-Meier analysis of cause-specific survival in oral 

squamous cell carcinoma patients. High CDC20 expression was associated with low 

overall survival in OSCC patients. 
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Figure 8: Univariable Kaplan-Meier analysis of cause-specific recurrence-free 

survival in oral squamous cell carcinoma patients. High CDC20 expression was not 

associated with recurrence- free survival in OSCC patients. The vertical lines and the “x” 

signals indicate the censored events. 
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Table 3: Multivariable analysis of cancer-specific survival on variables with 

significant independent effect, according to tumor grade, N status, clinical stage, 

treatment modality, T status and CDC20 expression in oral squamous cell 

carcinoma patients 

Variablea p-value HR 95% CI 

Tumor gradeb 

N statusc 

Clinical staged 

Treatment modalitye 

T statusf 

CDC20 expressionf 

0.843 

0.463 

0.273 

0.174 

0.000 

0.032 

1.090 

0.845 

1.495 

1.467 

2.310 

2.360 

0.463-2.567 

0.538-1.325 

0.728-3.070 

0.845-2.548 

1.575-3.387 

1.077-5.170 

HR, Hazard ratio; CI, confidence interval for HR. 
a Variables included in multivariable Cox regression analysis using backward 

conditional method: T status (ordinal variable);  N status (ordinal variable); 

clinical stage (ordinal variable); treatment modality (ordinal variable); tumor 

grade, G2+G3 vs G1 (reference category); and CDC20 expression, positive vs 

negative (reference category). b at  step 1.c at  step 2;  d at  step 3; e at  step 4; f at  

step 5;  
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Table 4: Multivariable analysis of recurrence-free survival on variables with 

significant effect, according to T status, clinical stage, N status, treatment modality 

and gender in oral squamous cell carcinoma patients 

Variablea p-value HR 95% CI 

T statusb 

Clinical stagec 

N statusd 

Treatment modalityd  

Genderd 

0.978 

0.440 

0.050 

0.089 

0.000 

0.989 

1.295 

1.548 

1.608 

4.824 

0.467-2.097 

0.672-2.494 

0.999.2.399 

0.930-2.782 

2.069-11.245 

HR, Hazard ratio; CI, confidence interval for HR. 
a Variables included in multivariable Cox regression analysis using backward 

conditional method: gender, female vs male (reference category); T status (ordinal 

variable);  N status (ordinal variable); clinical stage (ordinal variable); and treatment 

modality (ordinal variable). 
b
 at  step 1.

c 
at  step 2; 

 d 
at  step 3.  
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2. CDC20 as a potential therapeutic target 

 

Concluded the previous studies from which we can infer that CDC20 might be used 

as biomarker to predict poor prognosis in OSCC patients, we evaluated its potential as a 

therapeutic target in the HeLa cancer cell line. For this purpose, the gene encoding the 

CDC20 protein was silenced by RNA interference and the resultant cell phenotype was 

analyzed.  

 

2.1 Evaluation of CDC20 protein depletion efficiency 

 

2.1.1 CDC20 depletion in HeLa cell line was effective 

Before proceeding to the phenotype analysis, it was necessary to examine the 

efficiency of CDC20 silencing in HeLa cells.  

CDC20 silencing was carried out by siRNA against mRNA encoding the CDC20 

protein. We chose the HeLa cell line since it has a good response to RNAi technique.  

CDC20 depletion in HeLa cells was evaluated by immunofluorescence with 

specific anti-CDC20 antibody providing protein detection and localization, 72 hours 

after transfection. Under fluorescence microscope, we observed in HeLa control cells 

that CDC20 is localized on kinetochores with bright staining intensity in prometaphase, 

as show in figure 4, which considerably decreases in metaphase. This result is in 

agreement with what has been described in the literature [34]. In transfected cells with 

siRNA oligonucleotides against CDC20, as expected, no protein labeling was not 

observed (figure 4). This result attests that the siRNA oligonucleotides are efficient in 

CDC20 silencing. 

In addition, using protein extracts isolated from control and transfected cells, 

western blot technique was performed to indirectly analyze the efficiency of CDC20 

protein depletion. Since we didn’t achieve any labelling with anti-CDC20 antibody, we 

used cyclin B as an alternative protein mark. This way, the membrane with the 

transferred proteins was incubated with the following antibodies: rabbit anti-cyclin B (≈ 

62 KDa) and mouse anti-actin (42 KDa). The actin protein, whose expression is 

constant among different cell lines, was used as loading control allowing comparison 

between the bands from the control and transfected cells. Cyclin B, a regulatory protein 

involved in cell cycle regulation, is required for the activation of mitosis. Its expression 

increases during prometaphase and metaphase and dramatically decreases in anaphase 
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due to its degradation by the proteosome. Since CDC20 is required to target cyclin B for 

proteasomal degradation, its depletion is expected to in an increase in cyclin B 

expression levels in protein extracts isolated 72h after transfection. However, the results 

were not conclusive. This is probably due to the fact that anti-cyclin B antibody leads to 

several unspecific bands, rendering the results interpretation impossible.  
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Figure 9: Depletion efficiency of CDC20 protein by RNAi. Images obtained by 

immunofluorescence of HeLa cells at prometaphase with anti-CDC20 (red) and anti-α-

tubulin (Green) staining; The DNA (blue) was stained with DAPI. In the control 

situation (CTR) there is a strong staining of CDC20 in kinetochores that is undetectable 

in cells after CDC20 depletion (siCDC20). Bar = 5µm. 
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2.2 Analysis of the phenotype resulting from CDC20 depletion  

 

2.2.1 CDC20 depletion causes mitotic arrest and cell death 

After ensuring the effectiveness of CDC20 silencing, the resultant phenotype was 

analyzed.  

We observed that silencing of CDC20 gene by RNAi induced cell arrest in mitosis. 

Under phase contrast microscope visualization, mitotic cells can be distinguished by 

being brighter with a round shape, while the interphasic cells have a slightly elongated 

shape. As show in figure 10, a high number of cells are arrested in mitosis 

comparatively to control cells, 72h after transfection, using the phase contrast 

microscope. This result was also confirmed after cytospin and DNA staining with DAPI 

as show in figure 11, where we can see that the rounded cells were indeed cells arrested 

in mitosis, with condensed chromosomes (indicated by an arrow). This result is in line 

with some research works that similarly reported that CDC20 knockdown leads to 

mitotic arrest [95-97].  

As it was shown that cells are arrested in mitosis after 72h of CDC20 depletion, 

cells were submitted to 96h of transfection to see the resulting effect: whether they 

undergo cell death or continue the cell cycle division. As shown in figure 10, in 

transfected cells, we can see dead cells in suspension. Additionally, in figure 11 we can 

see micro-nucleus indicating cell death. 

Nevertheless, the role of CDC20 in human cell cycle is controversial. There are 

some research works showing that the interference with CDC20 is compatible with cell 

viability in a functional spindle checkpoint [98, 99]. Malureanu et al. constructed 

hypomorphic mice expressing small amounts of CDC20 and showed that these mice 

were healthy but with substantial aneuploidy [100]. Another study, using an inducible 

lentiviral short-hairpin (sh) RNA system, demonstrated that cells were not blocked in 

mitosis [101].  

The present results support that blocking CDC20 results in mitotic arrest. The 

differences between this study and the previous ones may be explained by the different 

levels of CDC20 depletion efficiency which were obtained in their results, since it may 

affect the way in which the cells are arrested in mitosis.   
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Figure 10: Depletion of CDC20 protein induces an accumulation of cells in mitosis 

and cell death. Images obtained by phase contrast microscopy of HeLa cells in culture. 

72 hours after CDC20 depletion (siCDC20), an increase in mitotic cells (round 

configuration) is visible comparatively to the control situation (CTR). 96 hours after 

CDC20 depletion, the mitotic cells seem to undergo cell death (black arrow), a 

phenotype non-observable in the control situation. Bar = 40 µm. 
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A B 

Figure 11: Depletion of CDC20 protein induces an accumulation of cells in mitosis and 

cell death. Fluorescence microscope images from cytospin 72 hours after depletion of 

CDC20. A: transfected cells show an increase of cells arrested in mitosis with condensed 

chromosomes (white arrow) compared to the control situation. B: presence of micro-nucleus 

(white arrow) indicating cell death after depletion of CDC20. Bar = 10 µm. 
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Besides cell cycle arrest in mitosis, we observed micro-nucleus formation in the 

transfected cells, suggesting that these cells undergo cell death. These assays were also 

performed in the SCC25 cell line. However, the phenotype analysis was inconclusive 

because, despite the transfection efficiency, the resultant phenotype did not show 

significant changes.  

Current anti-mitotic drugs that target microtubule dynamics, such as taxanes and 

vinca alkaloids, cause mitotic arrest by activating SAC and, consequently, kill cells by 

triggering apoptosis [5, 21]. However, many cancer cells can exit mitosis prematurely 

due to a weak SAC activity that does not fully respond to mitotic errors, thereby 

resisting such killing [71, 72]. It was shown that, independently of SAC activity, RNAi-

mediated knockdown of CDC20 slowed cyclin B1 degradation, giving more time to 

cancer cells to initiate cell death [96]. Our results fundament this idea, since we 

demonstrated that CDC20 depletion leads to mitotic arrest, and consequently, to cell 

death. Taken together, these results lead to the conclusion that targeting CDC20-

mediated mitotic exit is a better therapeutic approach than perturbing spindle assembly. 
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Conclusion  

The spindle assembly checkpoint (SAC) is a crucial surveillance mechanism that 

ensure accurate sister chromatid segregation avoiding genetic instability [3, 40]. 

CDC20, as a core SAC protein, has been found in several cancers type, including oral 

squamous cell carcinoma, with high expression levels [90]. In this line, with this project 

we aimed to study the clinic significance of CDC20 in tissues from OSCC patients 

evaluating its expression and their association with clinicopathological characteristics 

and patient survival, in order to evaluate it as a prognostic biomarker and as a potential 

therapeutic target.  

Our results reveal that: (1) CDC20 shows high expression levels in human OSCC 

tissues than in normal oral mucosa tissues; (2) An independent prognostic value was 

found for CDC20 where tumors with high expression of CDC20 had lower Cancer-

Specific Survival (CSS) comparatively to those with low expression levels; (3) 

Depletion of CDC20 by interference RNA assay causes mitotic arrest and cell death in 

HeLa cell line.  

In conclusion, our results identify high CDC20 expression as an independent 

prognostic marker of overall cancer-specific survival in patients with OSCC. Given the 

poor prognosis of such tumor and lack of therapeutic options available to them, clearly 

shows the importance of this study where high CDC20 expression could serve as a 

molecular marker to identify high-risk subgroups for OSCC therapy. 

Moreover, ours results in HeLa cell line by interference RNA have also 

demonstrated that CDC20 is an essential protein for mitosis and cell survival and could 

be useful in anti-cancer therapy. 

 

 

 

 

 

 

 

 



 

Page 46 of 53 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Future prospects 



 

Page 47 of 53 
 

Future prospects 

The obtained results lead to some expectations and new research routes to explore. 

After finding the role of CDC20 as a biomarker in OSCC, further investigations are 

needed to complement the results here obtained and, in this way, bring us closer to the 

clinical use of this protein’s predictive potential.  

In this work, HeLa cells were used since they are a standard cell line used for 

cancer studies. Its cellular pathways are well known and characterized and it grows in 

common laboratory conditions, making it an easy cell line to work with and obtain 

preliminary results. However, it is essential to confirm our findings in an OSCC cell 

line. We attempted to use the SCC25 cell line but the results were inconclusive. These 

assays need, therefore, to be repeated, using a normal oral cavity cell line as a control. 

Only then can these observations be transposed to OSCC. In addition, regarding the cell 

death observed in the phenotype resultant from transfected cells, the next step would be 

the performance of cell death evaluation assays such as trypan blue exclusion and LDH 

cytotoxicity detection.  

In a long term perspective, it is also possible to design an in vivo study, for 

instance, inducing cancer in mice using xenografts and analyzing the reaction to 

treatment with siRNA CDC20. 

After following these steps, it will be possible to known with more certainty 

whether CDC20 can be used as a therapeutic target in OSCC. In affirmative case, one 

viable option would be nanoencapsulation of the siRNA oligonucleotides against 

CDC20.   
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