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RESUMO  

O objetivo deste trabalho foi realizar uma revisão integrativa da literatura sobre a influência da 

irradiação a laser para aprimorar os aspetos topográficos da superfície de implantes de zircônia 

e o processo de cicatrização óssea. Foi realizada uma pesquisa eletrônica na base de dados 

PUBMED, usando os seguintes termos de pesquisa: “zirconia” AND “laser” AND “surface 

modification” OR “surface treatment” AND “dental implants” OR “bone” OR “osteoblast” OR 

“osseointegration”. Dos artigos identificados, 15 estudos foram selecionados nesta revisão. 

Os resultados relataram que a irradiação com laser foi capaz de promover alterações morfológicas 

nas superfícies de zircônia com aumento da rugosidade e molhabilidade. O aumento na 

rugosidade foi registrado em escalas micro- e manométrica e resultou em um aumento na 

molhabilidade e adsorção de proteínas. Além disso, a adesão, a disseminação, a proliferação e a 

diferenciação de células osteogênicas aumentaram após a irradiação a laser, principalmente com 

um laser em fentosegundo, 10nJ de energia, e frequência de 80 MHz. Após 3 meses de 

osseointegração, os estudos in vivo em cães revelaram uma percentagem média de contato osso-

implante para superfícies de zircônia (em torno de 47,9 ± 16%) quando comparados às superfícies 

padrão de titânio (61,73 ± 16,27%), demonstrando não haver diferença significativa entre os 

diferentes materiais.  

A técnica de irradiação a laser revelou vários parâmetros que podem ser usados para modificar a 

superfície da zircônia, como intensidade, tempo e frequência. Os parâmetros do laser podem ser 

ainda otimizados e controlados para alcançar uma modificação da superfície e resposta biológica 

desejáveis tendo em consideração ao processo de osseointegração. 

Palavras-chave: Zircônia; tratamento da superfície; laser; implantes dentários; osseointegração 
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ABSTRACT 

The aim of this work was to perform an integrative literature review on the influence of laser 

irradiation on zirconia implants to enhance surface topographic aspects and the biological 

response for bone healing. An electronic search was carried out on the PUBMED database using 

the following search terms: “zirconia” AND “laser” AND “surface modification” OR “surface 

treatment” AND “dental implants” OR “bone” OR “osteoblast” OR “osseointegration”. Of identified 

articles, 15 studies were selected in this review. 

Results reported that the laser irradiation was capable to producing changes on the zirconia 

surfaces regarding topographic aspects, roughness, and wettability. An increase in roughness was 

recorded at micro- and nanoscale and it resulted in an increased wettability and biological 

enhancement. Also, adhesion, spreading, proliferation, and differentiation of osteogenic cells 

were enhanced after laser irradiation mainly by using Femtosecond laser at 10nJ and 80MHz.  

After 3 months osseointegration, in vivo studies in dogs revealed an average percentage of bone-

implant contact for zirconia surfaces (around 47.9 ± 16%) when compared to standard titanium 

surfaces (61.73 ± 16.27%), demonstrating that there is no significant difference between the 

different materials. 

The laser irradiation technique revealed several parameters that can be used for zirconia surface 

modification such as intensity, time, and frequency.  Laser parameters can be optimized and well-

controlled to reach desirable surface morphologic aspects and biological response concerning the 

osseointegration process. 

Key words: Zirconia; surface treatment; laser; dental implants; osseointegration 

 
  



 

x 

 

  



 

xi 

INDEX  
 

1 - INTRODUCTION .................................................................................................................................................... 1 

2 - MATERIALS AND METHOD ............................................................................................................................... 2 

3 - RESULTS ............................................................................................................................................................... 3 

4 – DISCUSSION ...................................................................................................................................................... 14 

4.1 - ZIRCONIA IMPLANTS ......................................................................................................................................... 14 

4.2 - ZIRCONIA SURFACE MODIFICATION ................................................................................................................... 16 

4.3 - BIOLOGICAL RESPONSE TO SURFACE CHARACTERISTICS PRODUCED BY LASER ................................................. 18 

5 – CONCLUSIONS .................................................................................................................................................. 21 

REFERENCES ............................................................................................................................................................. 22 

 

  



 

1 

1 - INTRODUCTION  

In implant dentistry, osseointegration has been studied considering the direct, structural, 

and functional connection between bone tissue and implant surfaces over occlusal loading. (1–

5) The long term stability of dental implants depends on the chemical composition and surface of 

implants materials although the health state of patients also affect osseointegration. (6–8) On 

standard titanium dental implants, several physicochemical techniques have been successfully 

used for enhanced osseointegration such as double acidic etching and grit-blasting. (9–11) 

However, the surface modification of zirconia surfaces revealed different outcomes taking into 

consideration ordinary physicochemical techniques. (11–17) At first, the surface topographic 

aspects are quite different when compared to those noticed on titanium surfaces. (18) Second, 

the ordinary acidic etching has no effect on zirconia surfaces regarding roughness. (16,18) In this 

way, advanced surface modification methods have been developed to modify zirconia surfaces 

and maintaining the physical performance of the material. (18–24) 

Zirconia is a chemically stable and biocompatible ceramic used for implants and 

prosthetics in orthopedics and dentistry. (10,25,26) The chemical stability of zirconia becomes a 

challenge concerning the surface modification. (16,18) The physical properties of zirconia are 

achieved by stabilizing the tetragonal zirconia phase at room temperature by incorporating small 

contents of oxides: Y2O3, MgO, CeO2, or CaO. (25,26) For instance, yttria stabilized tetragonal 

zirconia polycrystals (YTZP) has a flexural strength at 900 - 1200 MPa, elastic modulus of 

approximately 210 GPa , and fracture toughness at around 7-10 MPa.m1/2. (26) In vitro and in vivo 

studies have demonstrated the osseointegration capability of Y-TZP zirconia implants quite 

similar to those on titanium implants since the surface modification techniques are well applied. 

(11–17) Grit-blasting is the major physical method to increase the titanium or zirconia roughness 

for adsorption of proteins, attachment of osteogenic cells, and bone formation. (6,13,14,27,28) 

Micro- and nano-scale surface modification influences the adsorption of extracellular matrix 

proteins, which regulate the adhesion of osteoblasts to the implant surface leading to cell 

proliferation and differentiation. (6,11,13,28) However, modification of zirconia cannot be 

controlled by using only ordinary surface modification such as grit-blasting.  

Various methods of surface treatment have been proposed to improve the surface 

properties of zirconia implants. (16,27,29–31) Currently, surface modification on the implant 

surface via laser irradiation has gathering attention regarding the increase in roughness, 
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wettabillity, and biological response without affecting the physical properties of zirconia. (19,21–

23) Morphological features (e.g. micro-grooves, pits, valleys, and peaks) on material surfaces can 

be controlled by using different intensity, type, time, and frequency of laser irradiation. (7,32) The 

fentosecond laser allows the reuse of sulcus and pores on the surface of zirconia implants, and 

can be used with different power intensity settings, (19,21,33,34) with a power of 30mW was able 

to produce grooves with a depth of 25µm and width of 30µm. (19) The CO2 laser, depending on 

the power intensity used, is capable of producing different patterns of surface microstructure. 

(22,23) Other types of lasers (e.g. Nd:YAG, ErCr:YSGG and fiber) are also capable of altering the 

surface of the zirconia producing different results in the surface quality of the treatments. 

(24,35,36)   

The main aim of this study was a literature review about the biological response to laser 

surface treatment in zirconia implants. It was hypothesized that laser treatment is able to improve 

the surface characteristics of zirconia implants by promoting a more effective biological response. 

2 - MATERIALS AND METHOD 

An electronic search was performed on the PUBMED database using the following search 

items: “zirconia” AND “laser” AND “surface modification” OR “surface treatment” AND “dental 

implants” OR “bone” OR “osteoblast” OR “osseointegration”. The inclusion criteria involved articles 

published in English language, up to May 20th, 2020 reporting studies on the modification of 

zirconia surfaces by laser irradiation. The eligibility inclusion criteria used for article searches also 

involved: articles written in English; meta-analyses; randomized controlled trials; and prospective 

cohort studies. The total of articles was gathered for each combination of key terms and therefore 

the duplicates were deleted using Mendeley citation manager. Two of the authors (JCMS, WFC) 

independently evaluated the titles and abstracts of potentially relevant articles. A preliminary 

evaluation of the abstracts was carried out to establish whether the articles met the purpose of 

the study. Selected articles were individually read and evaluated concerning the purpose of this 

study. The following factors were retrieved for this review: author names, journal, publication year, 

purpose, zirconia types, roughness, biological response, bone-to-implant contact (BIC) 

percentage, and laser parameters such as intensity, exposure time, laser type, wavelength, 

application mode. 
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3 - RESULTS 

The bibliographic search on PUBMED identified a total of 101 articles, as shown in Fig. 1. 

After excluding duplicates, 46 articles were evaluated by title and abstract although 31 were 

excluded because they did not meet the inclusion criteria. The remnant 15 articles were full read 

and then considered relevant to the purpose of the present study. Thus, 15 studies were included 

in this review. 

 

Of the 15 selected studies, 7 (46.7%) were carried out in vitro while 8 (53.3%) were 

performed in vivo. The bone to implant contact (BIC) was evaluated by 7 studies (46,7%) while 3 

(20.0%) studies evaluated the resorption of the bone crest. Laser surface treatment was 

morphologically characterized by 10 (66.7%) in vitro articles and 6 (40.0 %) evaluated the cellular 

response to the laser surface treatment. The main outcomes can be drawn as follow: 

 

Figure 1: Study selection flowchart 
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• The laser treatment of the surface promoted changes in the topography of the 

implant surface at following the levels of scale: mesoscale (grooves), micro-scale 

(peak/valley), nanoscale (nodules). (37) The crystalline structure of the zirconia 

was not altered after laser-treatment leading to the maintenance of the tetragonal 

phase and decreasing the residual monoclinic phase. (19,21) A nanoscale rough 

surface was noted in the micro-grooves of zirconia surfaces. (21,35,38,39) 

• The laser surface treatment was favorable to the adhesion, proliferation and 

differentiation of osteoblasts on the zirconia surfaces, with increase of 1 to 8 times 

of cell proliferation in the laser-treated groups compared to control groups. 

(22,23,36) 

• In animal models, the proportion of bone-implant contact (BIC) on laser-treated 

zirconia implants showed mean values that allow them to be considered as a valid 

option in the clinical practice of implantology. (20,34,40,41) When compared to the 

laser treatment produced on the surface of YTZP zirconia implants with the 

treatment by blasting and HF, the treatment produced by the laser provided a 

higher degree of BIC. (35) However, laser-treated zirconia showed similar BIC 

values to the titanium surfaces treated by ordinary grit-blasting and etching 

procedures. (20,41) 

• Also, the laser-treated implants showed good levels of peri-implant bone crest 

maintenance in the animal models. (20,33,40) Early loaded implant promoted a 

less bone crest loss (0.5 ±0.23 mm) in comparison with late loaded implants (0.56 

± 0.28mm) over a period of 90 days. (40) 
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Table 1: Relevant data extracted from the selected studies 

Authors (YEAR)  Study 
Design 

Sample size Follow Up Laser parameters Analyses Main outcomes 

Aivazi et al., 
(2016)(19) 

In vitro A-3Y-TZP20  

Nano-composite discs, with an 
average grain size of ≤ 400nm. 

ND Femtosecond laser 
(Legend Elite 
Coherent Inc. 
company, USA), 
with polarized 
pulses at 800 nm 
at 1000 Hz and 
30mW, 0,50mm/s 

• SEM - Surface 
characterization, 
Element analysis;   

• XRD - Chemical and 
Phase composition; 

• FESEM -structural 
analysis 
 

• The surface of the A-Y-TZP20 samples was modified to the 
micro-groove pattern. Reduction of contaminants 
incorporated in the previous stages of manufacture.  

• The material around the microstructures did not show 
phase transformation. 

Calvo-Guirado et 
al., (2013)(20) 

Animal study 

• 6 male 
American 
Foxhound 
dogs aged 1 
to 3 years 
and 
weighing 
between 18 
and 20 kg. 
Each dog 
received 8 
implants. 

 

48 implants, two groups: 

• control - titanium 
implants.                   

• test – zirconia Y-TZP 
implants White SKY® 
(Bredent Medical) 

• 1 month 
• 3 months Tsunami® Ti: 

Sapphire oscillator 
(Spectra Physics, 
Newport 
Corporation, 
Alberta, Canada) 
that produces 
pulses of a 
hundred 
femtoseconds, 
near-infrared 
wavelengths 
(795nm), and 10nJ 
energy, with a 
repetition rate of 
80MHz. 

• SEM – BIC; 
• EDX - Elemental 

analysis;  
• Histomorphometric 

analysis and 
measuring crestal bone 
height. 

1 month: 

• BIC Ti implants - 51.36%  
• BIC zirconia implants - 44.68% 

Marginal bone resorption: 

• Zirconia implants (0,01mm); 
• Titanium implants (0,77mm). 

3 months: 

• BIC Ti implants - 61.73%   
• BIC zirconia implants - 47.94% 

 Marginal bone resorption: 

• Zirconia implants (1.25mm); 
•  Titanium implants (0.37mm). 



 

6 

Calvo-Guirado et 
al., (2014)(40) 

Animal study 

• 6 male 
American 
Foxhound 
dogs aged 
between 1 
and 3 years 
and 
weighing 
from 18 to 
20 kg.  Each 
dog received 
8 implants. 

48 zirconia implants White 
Sky® (4mm x 10mm) 

• 24 with immediate loading; 
• 24 without loading 

• 30 days 
• 90 days Femtosecond laser 

• SEM, OM – BIC; 
• Periotest – Stability;  
• X ray - crestal bone 

height.                             

After 30 days 

• BIC - immediately loaded group – 38.9% and non-loaded 
32%.  

• Crestal bone resorption in the non-loaded group (0.58 ± 
0.28mm), immediately loaded group (0.5 ± 0.3mm).  

After 90 days 

• BIC - immediately loaded group - 65% and 57.6% for non-
loaded. 

• Crestal bone resorption in the immediately loaded group 
(0.5 ± 0.23mm), non-loaded group (0.56 ± 0.28mm). 

Calvo-Guirado et 
al., (2014)(34) 

Animal study 

• 20 male New 
Zealand 
rabbits aged 
30–35 
weeks and 
weighing 
3900–
4500g, 
placing 
two implants 
per tibia 

80 implants, four groups:  

• Group A: titanium implants, 
sandblasted and acid-
etched   

• Group B: zirconia implants 
and sandblasted  

• Group C: titanium implants, 
sandblasted and acid-
etched, supplemented with 
MLT 5% in solution.  

• Group D: zirconia implants, 
sandblasted and micro 
grooved by femtosecond 
laser, supplemented with 
MLT 5% in solution 

• 1 week          
• 4 weeks Femtosecond laser 

Ti: Sapphire 
oscillator 
(Tsunami; Spectra 
Physics, Santa 
Clara, CA, USA) 
The system 
delivers 120fs 
linearly polarized 
pulses at 795nm 
with a repetition 
rate of 1kHz. Pulse 
energy can reach a 
maximum of 1.1mJ 

• SEM, OM and EDX - 
BIC.  At 1 week:  

• Group C (29.7 ± 2.4%) and group D (28.9 ± 1.3%) implants 
showed higher BIC % compared with group A and B.  

After 4 weeks: 

• Group D showed higher BIC compared with all the groups  
(47.5 ± 2.2%). 
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Delgado-Ruiz et 
al.,   (2011)(21) 

In vitro 66 cylindrical zirconia implants 
(3Y-TZP)  

4mm x 8mm, three groups:  

• control group (without 
laser modification), 

• Group A (implants treated 
with femtosecond laser 
pulses to create pores), 

• Group B (implants treated 
with femtosecond laser 
pulses to create grooves). 

ND Femtosecond 
laser Ti: Sapphire 
oscillator 
(Tsunami, Spectra 
Physics). The 
system delivers 
120fs linearly 
polarized pulses at 
795nm with a 
repetition rate of 
1kHz. 

• Optical interferometric 
profilometry - surface 
roughness;             

• SEM - Surface 
characterization;               

• X-ray diffraction - 
change in crystalline 
structure; 

• EDX - Elemental 
analysis.  

 

• Ultra-fast laser ablation increased the surface roughness 
(Ra, Rq, Rz and Rt) significantly for the two texture 
patterns, from 1.2x to 6x times when compared to the 
control group (p <0.005).  

• Significant decrease in contaminants such as carbon 
(Control 19.7% ± 0.8%> Group B 8.4% ± 0.42%> Group A 
1.6% ± 0.35%) and aluminum (Control 4.3% ± 0.9%> 
Group B 2.3% ± 0.3%> Group A 1.16% ± 0.2%) on laser 
treated surfaces (p <0.005).  

• The tetragonal phase was preserved, while the traces of 
the monoclinic phase present on the treated surfaces were 
reduced (Control 4.32%> Group A 1.94%> Group B 1.72%). 

Delgado-Ruiz et 
al., (2014)(33) 

Animal study 

• 12 Foxhound 
dogs of 
approximatel
y one year of 
age, each 
weighting 
between 14 
to 15 kg, 
each 
mandible 
received 8 
implants  

96 implants (4 mm x 10 mm), 
four groups: 

• control group - Ti implants 
• group A -sandblasted 

zirconia implants; 
• group B –zirconia 

implants treated with 
femtosecond laser pulses 
over 2 mm from the neck 
area; 

• group C –zirconia implants 
treated with femtosecond 
laser pulses over the entire 
intraosseous surface  

• 1 month 
• 2 months 
• 3 months 

Femtosecond laser  
• SEM  
• EDX - Elemental 

chemical composition 
analysis; 

• Perioteste – Stability;  
• X ray - crestal bone 

height.                   

• Periotest values increased in all periods, proportional to the 
extent of the microgrooves, as follows: Group C > control > 
group B > group A (p <0.05). 

• Minimal bone loss at 3 months for implants in groups C, B 
and control compared to implants in group A (p <0.05).  

• The implant surfaces of groups B and C showed extra bone 
growth inside the micro grooves that corresponded to the 
shape and direction of the microgrooves. 
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Hao et al., 
(2004)(23) 

In vitro 

Human 
osteoblastic cell 
line hFOB 1.19, 

• 1x105 
cell/mL (cell 
fixation and 
morphology: 
24h),  

• 4×105 

cells/mL 
(cell growth 
analysis: 7 
days) 

• 1x105 
cell/mL (cell 
count 
analysis: 14 
days) 

 

Blocks with 50 x 12 x 2.15 mm 
of zirconia partially stabilized 
with 4% magnesia (MgO - 
PSZ) 

• 24 h 
• 7 days 
• 14 days 

CO2 laser: 3kW, 
used at: 

• 0.6kW/cm2, 
• 0.9kW/cm2,  
• 1.6kW/cm2, 
• 1.9kW/cm2, 
• 2.5kW/cm2, 

10.6μm 
wavelength, travel 
speed was 
adjusted to 2000 
mm/min. 

• SEM - Cell culture and 
adhesion; 

• Sessile drop measuring 
machine (First Ten 
Ångstroms, Inc) – 
Wettability; 

• Profilometer - surface 
roughness; 

• SEM, OM, XRD - 
microstructure and 
crystal size. 

Cell growth, compared with the untreated one: 

• (0.6 kW/cm2), increase 17%; 
• (0.9 kW/cm2), double cover density; 
• (1.6 kW/cm2), triple cover density; 
• (1.9 kW/cm2), triple cover density; 
• But the cell coverage area did not increase further at 

higher power density of 2.5. 

Surface roughness (Ra): 

• 0.295 µm (untreated), 
• 0.305 µm (0.6kW/cm2), 
• 0.333 µm (0.9kW/cm2),  
• 0.717 µm (1.6kW/cm2), 
• 1.882 µm (1.9kW/cm2), 
• 3.854 µm (2.5kW/cm2). 

Wettability: Glicerol 

• 79° (untreated), 
• 76° (0.6kW/cm2), 
• 62° (0.9kW/cm2),  
• 40° (1.6kW/cm2), 
• 50° (1.9kW/cm2), 
• 54° (2.5kW/cm2). 
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Hao et al., 
(2004)(39)   

In vitro. 

• Acellular 
human SBF 
(ion 
concentratio
n almost 
equal to that 
of human 
blood 
plasma) 

Blocks with 50x12x2.15 mm of 
zirconia partially stabilized 
with 4% magnesia  

(MgO – PSZ)  

• 14 days. 
CO2 laser: 3kW, 
used at: 

• 0.6kW/cm2, 
• 0.9kW/cm2,  
• 1.6kW/cm2, 
• 1.9kW/cm2, 
• 2.5kW/cm2, 

10.6μm 
wavelength, travel 
speed was 
adjusted to 2000 
mm/min. 

• Sessile drop measuring 
machine (First Ten 
Ångstroms, Inc) – 
Wettability; 

• Profilometer - surface 
roughness; 

• SEM, OM, XRD - 
microstructure and 
crystal size. 

The Ra increased as the laser power density increased. The 
surface roughness (Ra) was: 

• 0.295µm (untreated), 
• 0.305µm (0,6kW/cm2), 
• 0.333µm (0,9kW/cm2), 
• 0.717µm (1X6kW/cm2), 
• 1.882µm (1,9kW/cm2), 
• 3.854µm (2,5kW/cm2). 

The shape of the surface microstructure varied with the 
different power densities of the CO2 laser applied: 

• Crystal rearrangement (0.6kW/cm2), hexagonal structure 
(0.9kW/cm2), cell formation (1.6kW/cm2) uniform cell 
formation (1.9kW/cm2) and coral and dendritic 
(2.5kW/cm2). 

•  Improve the bioactivity of the MgO-PSZ surface, 
generating a functional group to facilitate the formation of 
bone apatite’s. 

Hao et al., (2005) 
(22) 

In vitro 

• Human 
osteoblastic 
cell line 
hFOB 1.19, 
4×105 

cells/mL 

5% yttria partially stabilized 
zirconia (YPSZ)  

• 1 week 
CO2 laser: 3kW, 
used at  

• 1.80 kW/cm2, 
• 2.25 kW/cm2. 

10.6μm 
wavelength, travel 
speed was 
adjusted to 
5000mm/min 

• SEM - Cell culture and 
adhesion; 

• Sessile drop measuring 
machine (First Ten 
Ångstroms, Inc) - 
Wettability 

• In the treated samples, there was a decrease in surface 
roughness and a solidified microstructure. Increased 
wettability characteristics and better adhesion of 
osteoblastic cells. 

Wettability: Glicerol 

• 82.4° (untreated), 
• 74.2° (1.80kW/cm2), 
• 70.5° (2.25kW/cm2),  

The shape of the surface microstructure varied with the 
different power densities of the CO2 laser applied: 

hexagonal structure (1.8kW/cm2), cell microstructure 
(2.25kW/cm2).  



 

10 

Hirota et al., 
(2019)(35) 

Animal study  

• 12 male 
Wistar rats, 
each 
weighing 
approximatel
y 180g and 6 
weeks old. 
Each animal 
received an 
implant, in 
the femur. 

12 implants (rectangular plates 
3x2x1mm) 

• G1- laser/3Y-TZP;  
• G2- laser/A-10Ce-TZP30; 
• G3 – blasted HF/3Y-TZP;  
• G4- blasted HF/A-10Ce-

TZP30. 

• 4 weeks 
Nd:YAG 
nanosecond-
pulsed laser 3 ns; 
150µJ/pulse; 
1,064nm; 50Hz; 
7µm/s. 

• SEM - Surface 
characterization;               

• EDX - Elemental 
analysis; 

• CLSM –BIC and bone 
formation. 

 

• Production of nanoscale surface topography inside the 
micro grooves of Y-TZP and Ce-TZP. 

• Laser treatment was effective to increase BIC for  
• Y-TZP (78.9%±6.57%), but not for Ce-TZP (14.0%±2.43%). 

BIC of laser implants/Y-TZP was significantly the highest 
among the four different implants (p <0.05). 

• Surface chemistry influenced bone formation separately 
from surface morphology. 

Hoffmann et al., 
(2012)(41) 

Animal study  

• 48 female 
New Zealand 
White 
rabbits 
weighing 
between 2.0 
and 2.5 kg 
each. One 
implant was 
placed in 
each distal 
rear femur of 
each rabbit, 
with a total 
of two per 
rabbit 

 

 

96 implants (3.2x6mm) four 
groups:  

• (G1) - 24 zirconia with a 
sintered surface;     

• (G2) – 24 zirconia with a 
laser-modified surface; 

• (G3) – 24 zirconia with a 
sandblasted 
surface (control 1);  

• (G4) – 24 titanium with an 
acid-etched surface 
(control 2) 

• 6 weeks; 
• 12 weeks ND 

• OM - BIC 
BIC 6 weeks:  

• sintered zirconia - 32.996%±14.192%; 
• laser-modified zirconia - 39.965%±13.194%;   
• sandblasted zirconia - 39.614%±15.029%;  
• titanium implants - 34.155%±15.816%. 

 

BIC 12 weeks:  

• sintered zirconia - 33.746%±14.529%;  
• laser-modified zirconia - 43.87%±14.544%;  
• sandblasted zirconia - 41.350%±15.816%;  
• titanium implants - 34.818%±12.209%.  
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Nassif et al., 
(2018)(38) 

In vitro 

• Cell line used 
was Saos-2 
(primary 
human 
osteosarcom
a) 
50x103/mL 

80 zirconia disks (19.5x3mm):  

ZrO2 + HfO2 + Y2O3: >99.0 

Y2O3: 4.5–5.6 

HfO2: < 5Al2O3: < 0.5; Other 
oxides: < 0.5) 

Four groups: 

• Group I: sintered (AS -
control); 

• Group II: Rocatec (ROC); 
• Group III: Laser (LAS). 
• Group IV: SIE. 

• 3 days  
• 1 week Er, Cr:YSGG laser 

(BIOLASE, 
California, USA) 
frequency - 20Hz; 
power - 3W 

• VHN - Microhardness; 
• AFM - Surface 

morphology and 
topography; 

• SEM - Microstructural 
• Components; 
• Hemocytometer – Cell 

number and density 

Cell count: 

• 3 days – SIE (53.5 ± 2.2) > AS (51 ± 1.4) > LAS (23 ± 1.9) > 
ROC (21.5 ± 1). 

• 7 days - SIE (108 ± 1.7) > AS (72 ± 2.1) > LAS (37.5 ± 1.2) > 
ROC (32 ± 1.4)  

 

Surface Roughness (Ra):  

• ROC (2.201µm ±0.352µm) > LAS (1.412µm ±0.166µm) > SIE 
(0.830µm ± 0.098µm) > AS (0.475µm±0.027µm). 

Soares et al., 
(2016)(24) 

In vitro 

MC3T3-E1 
osteoblast cells, 
line derived from 
mouse tissue, 
1x104 cells/mL 

48 Y-TZP blocks (92% ZrO2, 
5% Y2O3, HfO2<3%, Al2O3, SiO2 
<1%) were divided into 4 
groups: 

• G1 (no laser irradiation); 
• G2 (1.5W); 
• G3 (3.0W);  

G4 (5.0W). 

• 3 days  
• 7 days Laser Er,Cr:YSGG 

las (Waterlase, 
Biolase 
Technology Inc, 
Irvine, CA; 
wavelength of 
2780nm). Used at: 

• 1.5W;  
• 3.0W;  
• 5.0W;  

30 seconds; 20Hz 

• Confocal White Light 
Microscope - surface 
roughness topography;  

• SEM - zirconia surface 
morphology, cellular 
morphology; 

• MTT - cell adhesion 
and proliferation 

Surface Roughness (Ra):  

• G1 (1.26±0.6), 
• G2 (1.52±2.0),  
• G3 (1.14±0.7), 
• G4 (0.70±0.3). 

After 3 days, cell response higher than the control group:  

• G2 = 1,4%,  
• G3 = 3.1%. 
• G4 = 4,5%  

After 7 days, there was no difference between groups. 
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Rezaei et al., 
(2018)(37) 

 

In vitro 

• Osteoblasts 
derived from 
the bone 
marrow of 
the femur of 
Sprague - 
Dawley rats, 
3×104 
cells/cm2                  

 

Animal study  

• 12 male 
Sprague-
Dawley rats, 
eight weeks 
old (femur) 

Zirconia (Y-TZP) in disc (20mm 
in diameter, 1.5mm in 
thickness) and cylindrical 
shape (1mm in diameter, 2mm 
in length).  

Two groups:  

• Y-TZP with machined 
surface, 

• laser engraved rough 
surface. 

• 6 h  
• 24 h  
• 3 days  
• 5 days  
• 7 days  
• 14 days           

 

• 2 weeks  
• 4 weeks 

ND 
• SEM - Surface 

morphology; 
• ESCA - Chemical 

composition of the 
surface;  

• XPS - Chemical 
composition of the 
surface;    

• WST-1 - Cell density;  
• qPCR - Gene 

expression;  
• EDX - Elemental 

analysis;                   
• OM - Surface 

morphology; 
• LM - osteoblast 

morphology and 
scattering;  

• Push-in test - strength 
of bone-implant 
integration. 

Surface morphology: 

• The rough surface of the Y-TZP was characterized by 
grooves on a meso scale (50μm wide, 6–8μm deep), 
microscale valleys (1–10μm wide, 0.1–3μm deep) and 
nanoscale nodules (10 -400 nm wide and 10-300 nm 
high), while the machined surface was flat and uniform. 

The average roughness (Ra): 

• Of the laser-treated Y-TZP was five times greater than that 
of machined zirconia. 

Cell density: 

• The number of osteoblasts adhered to the zirconia surfaces 
after 6 and 24 hours of culture was equivalent between the 
machined and laser treated surfaces. 

Push-in test in the two and four weeks:   

• 2.2-times greater for hierarchical rough zirconia implants 
than machined zirconia implants. 
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Taniguchi et al., 
(2015)(36) 

In vitro                      

• MC3T3-E1 
1.4x104 

cells/cm2 

 

Animal study 

• 16 male 
Sprague-
Dawley rats, 
8 weeks old. 
Each rat 
received S-
ZrI in one 
tibia and R-
ZrI in the 
other tibia 

In vitro: 

• 132 zirconia plates (Y-TZP; 
10x10x1mm). Two groups: 

• smooth polished surface 
(66 S-Zr),  

• Rough surface created 
with a fiber laser (66 R-Zr). 
 

Animal study: 

32 implants (1,6x8mm). Two 
groups: 

•  Smooth polished surface 
(16 S-ZrI), 

• Rough surface created 
with a fiber laser (16 R-ZrI).     

• 6 h 
• 24 h                
• 3 days 
• 7 days 
• 14 days 

 

 

 

• 4 weeks 

Fiber laser (MD-
F3000, Keyence, 
Osaka, Japan) 

• Laser microscope - 
surface roughness; 

• SEM - surface 
roughness, cell 
morphology; 

• OM - cell morphology; 
BIC;   

• WST - cell 
proliferation;                     

• PCR - osteoblastic 
activity. 
 

Cell proliferation: 

•  was significantly greater in R-Zr than in S-Zr, in 3 days. 
•   R-Zr index was 1.2 times higher on days 7 and 14 days. 

Surface roughness: 

• The values of surface roughness indexes Sa of R-Zr were 
9.7 times greater than that of S-Zr, and the Sdr value of R-
Zr was 7.8 times greater than that of S-Zr. 

• In the implant, the Sa value of R-ZrI was 13.0 times greater 
than that of S-ZrI, and the Sdr value of R-ZrI was 37.8 
times greater than that of S-ZrI. 

BIC: 

• The BIC ratio for the cortical bone side was 2.1 times higher 
for R-ZrI than for S-ZrI, while the ratio for the bone marrow 
side was almost the same for R-ZrI and S-ZrI. 
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4 – DISCUSSION 

4.1 - Zirconia implants 

Zirconia has revealed remarkable clinical outcomes in the biomedical field, mainly in 

orthopedics and dentistry, due to the biological and response. (10,14,25,26,42,43) In the last years, 

zirconia has been used to develop teeth root canal posts, orthodontic brackets, and implant 

abutments, and prosthetic infrastructures. (9,44,45) Since 2004, the zirconia implants 

commercially available regarding aesthetic, mechanical, and biological peri-implant outcomes. 

(5,13,17,45–51) 

Zirconium dioxide (ZrO2) known as zirconia is a polymorphic ceramic, which has three 

distinct crystallographic phases: monoclinic (m), tetragonal (t) and cubic (c). (26,52,53) At room 

temperature pure ZrO2 has a monoclinic structure that remains stable up to 1170 ° C. (26) It turns 

to the tetragonal zirconia when sintering in the temperature between 1170 and 2370 °C while the 

cubic phase is reached between 2370 and 2680 °C. (26) Zirconia as a ceramic biomaterial  On 

cooling, the ZrO2 tetragonal phase becomes monoclinic at a temperature around 970 °C. (26) The 

transformation pathway of tetragonal to the monoclinic phase is associated with approximately 

3 to 4% volumetric expansion that can lead to cracks. (26,52) The mechanical properties of the 

zirconia are enhanced when the tetragonal phase is stabilized by adding small content of oxides 

such as yttrium oxide or yttria (Y2O3), magnesium oxide (MgO), cerium oxide (CeO2), and calcium 

oxide (CaO). (26,52–55) For instance, yttria-stabilized polycrystals zirconia (YTZP) is produced by 

adding 2-5 mol% yttria in the zirconia. (56) That results in a significant increase in the flexural 

strength values at around 1200 MPa, elastic modulus at 230-270 GPa, and fracture toughness of 

approximately 9- 10 MPa. m1/2. (17,45,52,53,57) On high stresses, oxide-stabilized zirconia has an 

inherent mechanism to inhibit the propagation of cracks. That consists in a transformation of the 

tetragonal to the monoclinic phase with an increase in the surrounding volume leading to the 

compression of the crack. (26) However, zirconia is susceptible to degradation at low temperature 

when used in a humid environment as found in the oral cavity. (26) Recurring tetragonal-to-

monoclinic phase transformation can result in fatigue by cyclic stress from mastication loading 

and thermal oscillations. In this way, additive oxides such as alumina, ceria, or silica has been 

used to improve the degradation resistance of zirconia. (25,26,58) 
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Regarding surface, topography, roughness, and chemical composition control the 

wettability and adsorption of proteins and ions (e.g. Ca+2, PO-, OH-) onto the zirconia prior to the 

osseointegration. (22,23,39)  Then, the activation of blood platelets and osteogenic cell migration 

follow the formation of the primary bioactive layer composed of ions and proteins. (7,46,59–61) 

The differentiation of osteogenic cells and further formation of collagen matrix and bone tissue 

depend on the surface features and chemical interaction. (7,36) Several surface modifications 

have been proposed to enhance the surface such as grit-blasting, calcium-based coatings, 

ultraviolet irradiation, and laser-structuring protocols. (15,20,24,27–31,62) Nevertheless, zirconia 

surface modification is a current challenge considering a balance among physical properties, 

chemical stability, and degradation behavior. (63) Nowadays, most zirconia implants commercially 

available undergo surface treatment by grit-blasting, which produce non-homogeneous and 

Figure 2: A) Crystalographic phases of zirconia. B) Doping agents. C) Zirconia tenacification mechanism. 
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random surface features under high risks of degradation. (11) The crystalline structure of the 

zirconia was not altered after laser-treatment leading to the maintenance of the tetragonal phase 

and decreasing the residual monoclinic phase. (19,21) Surface modification of zirconia by laser-

structuring has been studied and therefore different procedures can be applied regarding the 

laser type,  intensity, time, and mode. (19–24,36) In fact, the wettability and roughness of zirconia 

surfaces can be enhanced by laser-structuring maintain the degradation resistance, 

biocompatibility, and chemical interaction with the surrounding medium. (21–23,36,39)  

4.2 - Zirconia surface modification 

Zirconia implants are often machined by CAD-CAM that results in surfaces with grooves or 

scratches leading to an average roughness (Ra parameter) at around 0.2-0.4 µm. (22,36,37) 

Similar roughness values (~0.3 µm) were reported on machined MgO-PSZ. (23,39) Wettability of 

the MgO-PSZ was measured by the contact angle of glycerol droplet of around  79° (23) while 

machined YPSZ revealed a mean value of 82.4°. (22) The average roughness of sintered YTZP was 

measured at around 1.2 ± 0.6 µm. (24) Sintered YTZP implants are produced with rough surfaces 

once the peak and valleys depend on the zirconia powder particle size. (19) On the standard 

surfaces of YTZP implants modified by the grit-blasting method, the average roughness of 

machined YTZP can be increased due the abrasive effect of airborne particles. (21,33) As a 

consequence, morphological features such as peaks and valleys are randomly distributed over the 

grit-blasted and sintered zirconia surfaces. The average roughness of YTZP grit-blasted surfaces 

has been measured ranging from 1.2 to 1.6 µm. (21,33)  

The morphological aspects of zirconia surfaces can be controlled by using the laser 

irradiation approach. Well-designed grooves, scratches, valleys, and peaks are produced at macro- 

and micro-scale width (1-100 µm) and micro-/submicron-scale depth (0.1-10 µm). (37) The 

roughness and wettability of laser-treated surfaces can also be adjusted considering the implant 

region, as seen in Table 1. (21,23,33,39) In a previous study, a femtosecond laser irradiation was 

used to produce micropore patterns with 30 µm diameter and 70 µm pitch and micro-grooves 

with 30 µm width and 70 µm pitch on Y-TZP. The average roughness values of the micropores’ 

patterns reached 2.4 ± 0.6 µm while micro-grooved surfaces showed roughness values of 9.5 ± 

0.6 µm. That resulted in an effective surface contact area of 15% for micro-porous surfaces and 

25% for micro-grooved surfaces. (21,33) Femtosecond laser irradiation was also applied on A-Y-

TZP surfaces leading to regular micro-grooves’ patterns with 30 µm width and 25 µm depth. (19)  

Granular polycrystalline structures with dimensions of 1-6 µm were detected, where 
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nanostructures with sizes ranging from 30 to 100 nm were observed. (21) In fact, the modification 

at micro and nano-scale increased the surface contact area for interaction with proteins and 

osteogenic cells.  

 

 

Previous studies reported the modification of MgO-PSZ surfaces by using CO2 laser 

regarding different laser intensity. (23,39) Morphologic aspects of the surfaces varied in function 

of the intensity such as:  crystal refurbishment on 0.6 kW / cm2; hexagonal structure on 0.9 kW 

/ cm2); pores formation (1.6 kW / cm2); and dendrite (2.5 kW / cm2). (23,39) Consequently, Ra 

roughness increased as the power density of the laser irradiation was augmented (Table 1): Ra of 

0.3 µm on 0.6 kW / cm2; 0.33 µm on 0.9 kW / cm2; 0.71 µm on 1.6 kW / cm2); 1.8 µm on 1.9 kW / 

cm2; and 3.8 µm on 2.5kW / cm2. (23,39) On the MgO-PSZ surfaces, the angle of contact of the 

glycerol droplet decreased as the roughness increased that indicates an increase in wettability: 

76° on 0.6 kW / cm2); 62° on 0.9 kW / cm2; 40° on 1.6 kW / cm2; 50° on 1. 9 kW / cm2; and 54° 

on 2.5 kW / cm2. (23) However, a significant decrease in the Ra roughness was detected on YPSZ 

when the CO2 laser intensity was increased although the morphological aspects also varied as a 

Figure 3: Representation of the laser grooved surface of a progresssive enlarged zirconia implant. 
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hexagonal microstructure appeared on 1.8 kW / cm2, while a porous microstructure was noted on 

2.25 kW / cm2. The values of the contact angle of the glycerol droplet also decreased with the 

increase in laser power: 74.2° on 1.80 kW / cm2 was found while an angle of 70.5° was found on  

2.25 kW / cm2. (22) 

On Er, Cr: YSGG laser at low level irradiation, no significant changes were detected on YTZP 

using the following parameters: 1.5 W (Ra of 1.52 ± 2.0 µm and Sa of 1.78 ± 2.0 µm); 3.0 W (Ra of 

1.14 ± 0.7 µm and Sa of 1.24 ± 1.3 µm); and 5.0 W (Ra of 0.70 ± 0.3 µm and Sa of 1.36 ± 1.0 µm). 

(24) However, micro-scratches and shallow grooves were detected in another study assessing a 

laser irradiation of 3 W on YTZP surface that resulted in a Ra roughness at 1.41 ± 0.166 µm and 

Rz roughness at 5.1 ± 0.327 µm. (38) A fiber laser was also used to produce changes on the YTZP 

surfaces and therefore the results revealed regular edges’ pattern leading to an increase in 

roughness at around 10 times (Sa of 1.75 ± 0.32 µm) when compared to machined surfaces (Sa of 

0.18 ± 0.04 µm). (36) 

4.3 - Biological response to surface characteristics produced by laser 

In vitro studies on cell culture have shown a stimuli of the osteogenic cell response on 

laser-treated zirconia, as illustrated in Table 1. (22–24) For instance, zirconia surface treated with 

CO2 revealed a significant an increase in the osteogenic cell proliferation by 70-90%    when 

compared to untreated zirconia. (22,23) The laser energy used in the surface treatment of zirconia 

has an active effect on the osteogenic cell behavior. (22–24) The osteogenic cell proliferation can 

be increased at when the laser intensity was increased. (22–24) A progressive increase in cell 

proliferation was noted on Y-TZP irradiated with Er, Cr: YSGG laser with wavelength of 2780 nm, 

for 30 seconds and 20 Hz at 1.5 W, 3 W and 5 W when compared to untreated zirconia. (24) 

However, another study with Er,Cr:YSGG laser at 20 Hz and 3 W reported a significantly smaller 

difference in cell proliferation for 3 and 7 days cell incubation. Viable cell count was measured at 

(23 ±1.9 x 103) and (37.5 ± 1.2x103) for laser-treated Y-TZP and (51 ±1.4 x 103) and (72 ±2.1x103) for 

untreated zirconia. (38) 

The morphological aspects of the osteoblast have been reported in previous studies by 

evaluating projections of cytoplasm, named phillopodia, and the spreading of the cell over the 

surfaces. (22–24,36,37) The cells exhibited a final stage of cell adhesion, showing more flattened 

and with a higher cytoplasmic projection with phyllopod that extended about 50-60 µm beyond 

the cells when compared to smaller philopods (5 to 10 µm projections) on untreated surfaces. 

(22,23) The degree of maturation achieved by osteoblasts after contact with leaser treated YTZP 
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surfaces is another important aspect to be considered, since it is a key factor for the production 

of the bone matrix. (36,37)  A higher degree of cell differentiation on laser-treated surfaces was 

validated by measuring osteogenic genes, such as collagen type I, osteopontin, osteocalcin, and 

BMP-2. (37) Results showed values ranging from 7 up to 25 times higher for laser-treated Y-TZP 

compared to untreated surfaces over a period of 7-days incubation. (37) Remarkable changes in 

cell morphologic aspects was evaluated by Taniguchi et al (36) at approximately 3 times for 

irradiated YTZP when compared to the non-irradiated Y-TZP. (36) The morphologic changes were 

linked to an increase in the gene expression of Runx2 mRNA, alkaline phosphatase, and oxytocin 

mRNA for 3, 7, and 14 days incubation, respectively. (36) Those are essential transcriptional factors 

for the differentiation of osteoblasts. (64) Thus, laser-based surface modifications increased the 

gene expression related to time-dependent osteogenic differentiation.  

Studies have shown similar BIC values for titanium or zirconia implant surfaces treated 

with laser irradiation. (20,34,41) In dogs American Foxhound model, mean bone to implant contact 

(BIC) percentage was recorded at 44.6 ± 17.6% for zirconia for 1 month and 47.9 ±16 % for 3 

months. No statistically differences were found when compared to titanium implant surfaces 

regarding the BIC mean values at 51.3 ±12 % for 1 month and at 61.7 ±16.2% for 3 months. (20) 

In another study in dogs American Foxhound  model, laser-treated zirconia implant surfaces 

showed the BIC mean values at 22.8 ± 1.5% for 1 week and 37.5 ± 2.1% for 4 weeks. (34) Those 

values were also not statistically different when compared to BIC values for titanium surfaces: 

25.4 ±1.2% for 1 week and  38.4 ± 1.8% for 4 weeks. (34) Similar results were found in another 

study in New Zealand white rabbits regarding the BIC mean values recorded on laser-treated 

zirconia implants at 39.97 ± 13.19% for 6 weeks and  43.87 ± 14.54% for 12 weeks in comparison 

to BIC mean values on titanium implant surfaces at 34.15 ± 10.34% for 6 weeks and 34.82 ± 

12.21% for 12 weeks. (41) Thus, laser treatment is able to modify the topography of the zirconia 

surface, improving osseointegration and generating BIC values similar to the surfaces of titanium 

implants. (20,34) BIC studies in Wistar rats showed no statistically difference between YTZP (56.2 

± 3.56%) and CeTZP (37.1 ± 14.01%) with sandblasted surface treatment and acid attack for four 

weeks. (35) However, the laser-treated YTZP surfaces by using Nd:YAG wavelength 104 nm, pulse 

of 3ns, 50  Hz and 150 mJ/pulse revealed higher BIC mean values (78.9 ± 6.57%) when compared 

to laser-treated CeTZP (14.0 ± 2.43%). (35)  
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In the comparison between machined and laser-treated YTZP implants, in the period of 

four weeks, the BIC mean values was 2 times higher (81.9 ±20.4%) in the cortical bone portion in 

the Sprague-Dawley rats hen compared to those for machined YTZP surfaces (39.8 ± 19.2%). In 

Figure 4: Scheme of the osseointegration process. A) Formation of the blood clot and fibrin matrix. Protein adsorption to the 
implant surface from the blood clot. B) Angiogenesis and formation of bone tissue. C) Distance osteogenesis and contact 
osteogenesis. D) Newly formed bone tissue. E) Mature bone tissue. 
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the cancellous bone portion, BIC mean values did not show significant differences. (36) In the 

evaluation of the BIC percentage between zirconia implants with different surface treatments, no 

statistically significant differences were found between the YTZP surfaces with different surface 

treatments for 6 or 12 weeks respectively: 33 ±14% and 33.7 ±14.5% on sintered zirconia; 39.6 

±15 % and 41.3 ±15.8% on gritblasted; and 39.97 ± 13.19% and 43.87 ± 14.54% on laser treated 

surface. (41) Regarding occlusal loading, Y-TZP implants with Femtosecond, subjected to 

immediate loading, showed higher BIC values for 1 month (38.9 ± 6.68%) and 3 months (65 ± 

4.36%) when compared to the same implant condition free of occlusal loading (32 ± 3.65% for 1 

month) and (57.6 ± 3.62% for 3 months). Findings revealed a statistically significant improvement 

of the BIC percentage when implants were immediately loaded. (40)  

In a Foxhound dogs model, Y-TZP zirconia implants treated with femtosecond laser, near-

infrared wavelengths 795 nm and 10 nJ energy with  a 80 MHz, showed marginal bone crest 

resorption values of at 0.01 ± 0.57mm for 1 month and at 1.25 ± 1.73mm for 3 months. (20) These 

values were statistically significant only in the three-month period when compared to the 

marginal bone crest resorption values in titanium implants: 0.77 ± 0.69 mm for 1 month and 0.37 

± 0.34 mm for 3 months. (20) Another study reported findings on Y-TZP zirconia implants treated 

with femtosecond on the entire implant body or only on the implant neck. (33) After 3 months, 

zirconia implants treated with laser at the neck region revealed a higher crestal bone loss (0.36 

± 0.01 mm) when compared to the implants treated in the entire contact surfaces (0.26 ± 0.01 

mm). (33) Immediately loaded Y-TZP zirconia implants showed crestal bone loss values of 0.5 ± 

0.3 mm for 1 month and 0.5 ± 0.23 mm for 3 months. (40) 

5 – CONCLUSIONS 

1. The surface treatment using the laser generated changes in the surface roughness 

parameters, producing microstructures in meso, micro and nanoscale, in addition to promoting 

better surface wettability. It is a clean and safe method that, due to the superficial changes 

produced, improves the biocompatibility of zirconia. 

2. The laser treatment produced a favorable response in the initial levels of adhesion and 

dissemination of osteoblasts on the zirconia surface, besides promoting proliferation and 

differentiation of these cells. 
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3. Laser treatment is able to preserve bone crest levels and promote greater bone growth 

in addition to increasing the BIC on the zirconia surface. Similar values of bone-implant contact 

were found in titanium implants and laser-treated zirconia implants. 

Perspectives: Further study is needed to establish ideal power parameters for each type 

of laser used in the surface treatment of the most varied zirconia ceramics found on the market, 

with the objective of producing optimal effects of surface roughness and energy, aiming at a 

better biological response. 
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