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Abstract 
 

The therapeutic use of small interfering RNA (siRNA) has been seen as a new 

possible potential approach to treat cancer. The key challenge in the clinical field is to 

deliver the siRNA to the cytosol of target cells within the affected tissues. Therefore, 

various siRNA delivery systems, such as liposomes, polymers, and inorganic 

particles, have been developed to improve the therapeutic efficacy of siRNA. 

The main goal of this project was to develop new protocols, as well as to optimize 

already known ones that are used to produce/synthetize chitosan/cetuximab 

conjugates, so later these could be used to encapsulate siRNA and targeting to 

EGFR overexpressing cells. Several challenges were presented over this process, 

thus many were the attempts to produce a viable and in reasonable concentration 

conjugate, in different molar proportions of cetuximab to quitosan. Not only timings 

were the concern, but also and mainly, compounds concentrations, and the addiction 

or removals of different steps of the process were taken in account. In the end a new 

protocol was produced. 

After the development and optimization of a new conjugation protocol, the second 

line of orders was to analyze the conjugates through Fourier transform infrared 

spectroscopy (FTIR) in order to attest the presence of a true new conjugate in the 

final product. Protein quantification was, as well, determined in pre and post filtered 

products, since that would also tell us, by exclusion, that if the pre-ultrafiltered 

products had some protein that would be conjugated to Low Molecular Weight 

Chitosan (LMWChi) since that as if it was free it would have pass the filter membrane 

(150K MWCO membrane). 

Finally the last order of works for this project was to test the produced conjugates in 

cells recurring to 3-(4,5-dimethylthiazol2-yl)-2,5-diphenyltetrazolium bromide (MTT) 

and lactate dehydrogenase (LDH) assays, in order to evaluate their effects regarding 

its cytotoxicity. 

A couple of the successful produced conjugates might be used in the future to 

encapsulate siRNA, produce nanoparticles and improve the therapeutic efficacy of 

siRNA as a target therapy for non-small cell lung cancer (NSCLC). Still concerning 

pharmaceutical technology significant efforts have to be done regarding this 

conjugate in specific, and its siRNA encapsulation efficiency.  
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Resumo 
 

O uso terapêutico de Small Interfering RNA (siRNA) tem sido observado como uma 

potencial nova abordagem para o tratamento do cancro. O desafio-chave no campo 

clínico consiste na entrega de siRNA no citosol das células-alvo. Assim, vários 

sistemas de entrega de siRNA, tais como lipossomas, polímeros e partículas 

inorgânicas, têm sido desenvolvidos de forma a melhorar a eficácia terapêutica do 

siRNA. 

O nosso principal objectivo neste projeto, que deu origem a esta dissertação, foi 

desenvolver novos protocolos, bem como optimizar outros já existentes, para o uso 

na produção/síntese de conjugados de quitosano/cetuximab, de forma a utilizar 

estes últimos para encapsular siRNA e direccioná-los para as células que 

sobreexpressam EGFR. 

Diversos desafios foram apresentados ao longo deste processo, assim, várias foram 

as tentativas de produzir um conjugado viável e em concentração razoável, em 

diferentes proporções molares de cetuximab para quitosano. Não foram apenas os 

tempos de reacção uma preocupação, mas também e principalmente as 

concentrações dos compostos e a adição ou remoção de diferentes passos do 

processo foram tidos em conta. No final, um novo protocolo foi proposto. 

Após o desenvolvimento e optimização do novo protocolo de conjugação, a segunda 

linha de objectivos consistiu na análise de conjugados através de FTIR de forma a 

confirmar a presença de um verdadeiro novo conjugado no produto final. 

A quantificação proteica foi, de igual forma, determinada em pré- e pós- filtração dos 

produtos, uma vez que nos iria dizer, por exclusão, que se os produtos pré-

ultrafiltrados possuíssem algum material proteico que pudesse ser, estaria 

conjugado com o LMWChi, uma vez que se estivesse livre teria passado a 

membrana de filtração (membrana de 150000 MW)   

Finalmente, a última linha de trabalhos deste projeto consistiu no teste em células 

dos conjugados produzidos, recorrendo aos ensaios com MTT e LDH com o objetivo 

de avaliar os seus efeitos citotóxicos. 

Um par dos conjugados produzidos com sucesso poderão ser utilizados no futuro 

para encapsular siRNA, produzir nanopartículas e melhorar a eficácia terapêutica do 

siRNA como terapia direccionada contra o cancro do pulmão das células não 
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pequenas, ainda assim considerando que muito trabalho haverá a fazer ao nível da 

eficiência de encapsulação do conjugado. 
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Introduction 
 

1. Epidemiology of lung cancer 

Cancer is a leading cause of morbidity and mortality worldwide (Arnold et al., 

2013, WHO, 2013), accounting for 12.7 million new cases and 7.6 million deaths 

(13% of all deaths) in 2008 (WHO, 2013, IARC, 2013). The latest world cancer 

statistics provided by the International Agency for Research on Cancer revealed that 

the number of new cancer cases has risen to 14.1 million in 2012, whereas cancer 

deaths increased to 8.2 million (IARC, 2013). GLOBOCAN 2012 estimates this trend 

to increase up to 19.3 million new cancer cases per year by 2025 (IARC, 2013), and 

cancer deaths are projected to continue rising, with 13.1 million deaths estimated in 

2030 (WHO, 2013). In addition, more than a half of all cancers (56.9%) 

(GLOBOCAN, 2013c) and cancer deaths (64.9%) (GLOBOCAN, 2013j) occurred in 

less developed countries; these numbers are projected to increase by 2025 (IARC, 

2013). Lung, breast, colorectal, liver and stomach cancers are the main responsible 

for cancer deaths each year (WHO, 2013). 

The development of a tumour cell is the result of the interaction between many 

factors (WHO, 2013). Besides genetic predisposition, population ageing and the 

increase in life expectancy, environmental factors, behavioural and dietary habits 

such as obesity, low fruit and vegetable intake, lack of physical activity, viral 

infections, alcohol and tobacco use, urban air pollution and indoor smoke from 

household use of solid fuels, constitute some of the leading risk factors for 

carcinogenesis (WHO, 2013, Jemal et al., 2011). Smoking, dietary habits and 

reproductive factors have been identified as the main modifiable risk factors for 

cancer in industrialised populations (Arnold et al., 2013). Modifying or avoiding key 

risk factors could prevent more than 30% of cancer deaths (WHO, 2013). 

In his regard, tobacco deserves special attention, since its use is the most important 

risk factor for cancer, being responsible for 22% of global cancer deaths and 71% of 

global lung cancer deaths (WHO, 2013). 

Concerning lung cancer, it led the list of the most commonly diagnosed cancers 

worldwide in 2012, accounting for 1.8 million cases (13.0% of the total), followed by 

breast (1.7 million, 11.9%) and colorectal cancers (1.4 million, 9.7%) (IARC, 2013). 
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Lung cancer was also the first cause of cancer deaths, raising from 1.37 million 

deaths in 2008 (WHO, 2013) to 1.6 million (19.4% of the total) in 2012, preceding 

liver (0.8 million, 9.1%) and stomach cancers (0.7 million, 8.8%) (IARC, 2013). 

Following the global tendency of all cancers, the number of lung cancer cases was 

more pronounced in less developed regions (58.4%) than in the more developed 

ones (41.6%) (GLOBOCAN, 2013o). Likewise, the number of lung cancer-related 

deaths was also higher in less developed regions (60.6%) than in the more 

developed ones (GLOBOCAN, 2013p). 

Lung cancer has been the most common cancer in the world for several decades, 

and remains as the most common cancer in men worldwide, with higher incidence 

rates (the double across all the income groups, and four times higher in upper middle 

income countries) than those of women (GLOBOCAN, 2013q). It is also the most 

common cause of cancer death worldwide (responsible for nearly one in five cancer 

deaths) (GLOBOCAN, 2013q). Furthermore, because of its high mortality rate (the 

overall ratio of mortality to incidence is 0.87) and the relative lack of variability in 

survival in different world regions, the geographical patterns in mortality closely follow 

those of incidence (GLOBOCAN, 2013q). 

In Europe, considering both genders, there were more than 3.4 million new cancer 

cases in 2012 (GLOBOCAN, 2013a). Lung cancer was the 4th cancer with higher 

incidence, with 410220 new cases (11.9% of the total), preceding breast (464202, 

13.5%), colorectal (447136, 13,0%) and prostate cancers (417137, 12.1%) 

(GLOBOCAN, 2013a). Lung cancer ranked 2nd on the most incident cancers 

(290904, 15.9% of the total) among men, after prostate cancer (417137, 22.8%) 

(GLOBOCAN, 2013d), and 3rd on women (119316, 7.4%), after breast (464202, 

28.8%) and colorectal cancer (205323, 12.7%) (GLOBOCAN, 2013f).  

During the same period, lung cancer has accounted for 353723 cancer deaths 

(20.1% of the total), preceding colorectal (214814, 12.2%) and breast cancers 

(131257, 7.5%) (considering both genders) (GLOBOCAN, 2013h). Between men, 

lung cancer ranked 1st, being responsible for 254610 deaths (26.1% of the total), 

preceding colorectal (113238, 11.6%) and prostate cancers (92318, 9.5%) 

(GLOBOCAN, 2013k). Regarding women, lung cancer ranked 3rd on the highest 

mortality rates (99113, 12.7%), after breast (131257, 16.8%) and colorectal cancers 

(101576, 13.0%) (GLOBOCAN, 2013m). 
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In Portugal, there were 49174 new cancer cases in 2012. Considering both genders, 

lung cancer accounted for 4192 new cases (8.5% of the total), ranking 4th, after 

colorectal (7129, 14.5%), prostate (6622, 13.5%) and breast cancers (6088, 12.4%) 

(GLOBOCAN, 2013b). Lung cancer ranked 3rd (3215, 11.3%) on new cases amongst 

men, after prostate (6622, 23.3%) and colorectal cancers (4209, 14.8%) 

(GLOBOCAN, 2013e). On women, lung cancer ranked 5th (977, 4.7%), after breast 

(6088, 29.4%), colorectal (2920, 14.1%), corpus uteri (1485, 7.2%), and stomach 

cancers (1184, 5.7%) (GLOBOCAN, 2013g). 

Considering all the 24112 cancer deaths occurred on both genders, lung cancer 

ranked 2nd, with 3441 deaths (14.3% of the total), between colorectal (3797, 15.7%) 

and stomach cancers (2285, 9.5%) (GLOBOCAN, 2013i). Considering men, lung 

cancer was the first cancer death cause, accounting for 2638 deaths (18.4% of the 

total), preceding colorectal (2240, 15.7%) and prostate cancers (1582, 11.1%) 

(GLOBOCAN, 2013l). In women, lung cancer deaths ranked 4th (803, 8.2%), after 

breast (1570, 16.0%), colorectal (1557, 15.9%) and stomach cancers (GLOBOCAN, 

2013n). 

 All these data highlight the high incidence and mortality rates of lung cancer 

worldwide. This substantiates the urgent need to search for new treatment 

approaches and for the improvement of the existing ones in order to overcome their 

inherent resistance and side effect problems, as well as to enhance their 

effectiveness and specificity for lung cancer. 

 The continuous learning about cancer biology, lung cancer histology and its 

molecular features, as well as the evolution of pharmaceutical technology and the 

emergence of new targeting formulations, are extremely important to overtake this 

disease. 

 

 

 

2. Lung cancer types 

 Cancer treatment is a very complex theme that involves multiple 

considerations. Knowing the histological type/subtype of the cancer, aside of the 

stage of the disease, is essential to select the adequate treatment approach. 
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 In this section, some of the main lung cancer histological types will be 

addressed, as well as some relevant molecular features of NSCLC (which constitutes 

the type of cancer that is constitutes the putative target of this work). 

 

 

2.1. Lung cancer histological types 

Among lung cancer cases, two situations must be distinguished: those that 

started in the lung (primary lung cancer), or those that have spread into the lung 

(secondary lung cancer) (CRU, 2013). This distinction is important since it may be 

determinant for the right treatment choice (CRU, 2013). 

Primary lung cancer can be categorized in three main groups: small cell lung cancer 

(SCLC), non-small cell lung cancer (NSCLC) (CRU, 2013, ACS, 2014b) and lung 

carcinoid tumour (ACS, 2014b). There are many other types of lung tumours, such as 

adenoid cystic carcinomas, hamartomas, lymphomas and sarcomas, which are rather 

uncommon (ACS, 2014f), for which they will not be addressed in this work. 

SCLC accounts for 10-15 out of every 100 diagnosed lung cancers (ACS, 2014b), 

and is usually caused by smoking (CRU, 2013). Its name derives from the cells’ small 

size, when observed under the microscope, and often spreads quite early (CRU, 

2013). It frequently starts in the bronchi, near the centre of the chest, and tends to 

grow and spread quickly to other parts of the body earlier than NSCLC 

(LungCancer.org, 2014c, ACS, 2014f). Since it almost always spreads to distant 

parts of the body before it is found (ACS, 2014f), chemotherapy may be the first 

treatment approach, rather than surgery (CRU, 2013). However, it is more responsive 

to chemotherapy than NSCLC (LungCancer.org, 2014c). 

Considering NSCLC, which is the most common lung cancer (about 85 out of 100 

lung cancers (ACS, 2014b)), there are three common types grouped together 

because of their behavioural similarities and different treatment responses from the 

one of SCLC (CRU, 2013): squamous cell carcinoma (25-30% of lung cancers), 

adenocarcinoma (40% of lung cancers), and large cell carcinoma (10-15% of lung 

cancers)  (NCI, 2013, ACS, 2014e). The cells on these subtypes differ in size, shape, 

and chemical make-up when observed under a microscope, but are grouped together 

because treatment and prognosis approaches are often very similar (ACS, 2014e). 
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Squamous cell cancer (also called epidermoid carcinoma (NCI, 2014a)) is usually 

linked more strongly with smoking than other forms of NSCLC (CRU, 2013, NCI, 

2013). It develops from the cells that line the airways, most of them are located 

centrally, in the larger bronchi (CRU, 2013, NCI, 2013). Its incidence has been 

decreasing in recent years (NCI, 2013). 

Adenocarcinoma also develops from the cells that line the airways, but differs from 

the previous type since it develops from a particular type of cells that produces 

mucus (phlegm) and is often found in the outer areas of the lungs (CRU, 2013). This 

is now the most common histologic subtype in many countries, and sub classification 

is important (NCI, 2013). One of the biggest problems with lung adenocarcinomas is 

the frequent histologic heterogeneity (NCI, 2013). In fact, mixtures of 

adenocarcinoma histologic subtypes are more common than tumours consisting 

purely of a single pattern of acinar, papillary, bronchialveolar, and solid 

adenocarcinoma with mucin formation (NCI, 2013). 

 Large cell carcinoma, is another type of NSCLC. Its name derives from the 

large and round shape presented by its cells under the microscope (CRU, 2013). It 

can appear in any part of the lung and tends to grow and spread quickly, which can 

make it harder to treat (ACS, 2014e). 

 There are numerous additional subtypes of NSCLC, such as adenosquamous 

carcinoma and sarcomatoid carcinoma, but they are much less common (ACS, 

2014e, NCI, 2013). 

Lung carcinoid tumours (also called lung neuroendocrine tumours) represent less 

than 5% of lung cancers (ACS, 2014b), and are uncommon tumours that tend to 

grow slower than other types of lung cancers (ACS, 2013b), rarely spreading (ACS, 

2014b). 

Secondary lung cancers refer to those that have spread from somewhere else in the 

organism, and cover quite a few different types of cancer, including breast and bowel 

cancers (CRU, 2013). In these cases, the choice of treatment depends on where the 

cancer started, since the type of cancer cells corresponds to those that initially 

metastasized (CRU, 2013). Therefore, the treatment chosen should target them, and 

not the cells of the tissue they have migrated towards (CRU, 2013). 

The process used to find out if cancer has spread within the lungs, to the lymph 

nodes or to other organs is called staging (NCI, 2014b, LungCancer.org, 2014c). The 

information gathered from the staging process determines the stage of the disease 
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and this is important to know in order to find the treatment approach that best fits the 

patient (NCI, 2014b). 

Since lungs are large, tumours can grow within them for a long period before they are 

found, even when symptoms (that are often neglected, such as cough) occur, turning 

early stage lung cancer (stages I and II) difficult to detect (LungCancer.org, 2014c). 

Most patients with lung cancer are diagnosed at later stages (III and IV) 

(LungCancer.org, 2014c). 

NSCLC may go through four main stages (LungCancer.org, 2014c). In stage I, the 

cancer is located only in the lungs and has not spread to any lymph nodes 

(LungCancer.org, 2014c). Stage II occurs when the cancer is in the lung and nearby 

the lymph nodes (LungCancer.org, 2014c). When the cancer cells are found in the 

lung and in the lymph nodes in the middle of the chest, stage III has already 

progressed and has two subtypes: stage IIIa is referred to when the cancer has 

spread only to lymph nodes on the same side of the chest where the cancer started; 

and stage IIIb when the cancer has spread to the lymph nodes on the opposite side 

of the chest, or above the collar bone (LungCancer.org, 2014c). The most advanced 

stage of lung cancer, stage IV, occurs when the cancer has spread to both lungs, to 

the fluid in the area around the lungs, or to another part of the organism 

(LungCancer.org, 2014c). 

As far as SCLC is concerned, it has two main stages: the limited stage, when the 

cancer is found on one side of the chest, involving just one part of the lung and 

nearby lymph nodes; and the extensive stage, when the cancer is spread to other 

regions of the chest or other parts of the organism (LungCancer.org, 2014c). 

 

 

2.2. Molecular features of non-small cell lung canc er 

 Recent developments in the field of molecular biology have allowed the 

identification of cancer ‘subtypes’ according to the molecular profile they present 

(West et al., 2012, Alamgeer et al., 2013). Specific mutations were found to trigger 

oncogenic pathways, shedding light into drug sensitivity mechanisms and primary or 

acquired resistance phenomena (Alamgeer et al., 2013). Their targeting appears as a 

means to prevent cancer development, setting the ground for personalized 
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approaches that improve the outcomes for specific subsets of patients with NSCLC, 

including those with metastatic disease (Alamgeer et al., 2013). 

 The epidermal growth factor receptor (EGFR) gene has been shown to 

harbour different activating mutations that cause its overexpression or over-activity 

(Alamgeer et al., 2013). In particular, this transmembrane receptor is highly 

expressed in 40-80% of NSCLC patients, with this overexpression being associated 

with a poor 

prognosis (Molina et 

al., 2008, Pallis, 

2012). Upon binding 

to different growth 

factors, EGFR 

activates, through 

its tyrosine kinase 

activity, a subset of 

proteins which, in 

turn, activate 

downstream signal 

transduction 

cascades, including 

mitogen-activated 

protein kinases 

(MAPK), protein 

kinase B (Akt) and 

c-Jun N-terminal 

kinases (JNK) 

pathways, which 

culminate in cell 

proliferation, 

motility, survival and 

other cell phenotypes associated with cancer progression (Fig. 1 ) (Pallis, 2012). 

Monoclonal antibodies such as cetuximab (which will be later addressed) compete 

with other ligands to bind the extracellular portion of EGFR, thus preventing 

Fig. 1 - Schematic representation of the signalling pathways that 
are targeted in NSCLC personalized treatment approa ches. VEGF 
inhibitors and EGFR TKIs are depicted. Bevacizumab,  a 
monoclonal antibody, binds VEGF and prevents it fro m binding 
VEGFR, thus disrupting angiogenesis, tumor grow th and 
metastasis. Sorafenib, in turn, disrupts angiogenes is by 
inhibiting multiple receptors, including VEGFR, PDG FR-β, and 
RAF-1. Erlotinib and gefitinib reversibly bind the tyro sine kinase 
domain of EGFR, while cetuximab reversibly binds its 
extracellul ar portion. Afatinib and PF00299804 irreversibly in hibit 
EGFR intracellular portion to halt tumor proliferation and 
survival.  

Figure adapted from (Moran, 2011) 
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downstream signalling pathways and cell proliferation deriving from uncontrolled 

EGFR activity (Pallis, 2012). 

EGFR mutations represent 17% of the mutations in lung adenocarcinoma 

(Alamgeer et al., 2013). A deletion at exon 19 and a point mutation in exon 21 

(L858R) account for more than 85% of all EGFR mutations in NSCLC, being the most 

common activating mutations and predicting higher response rates to anti-EGFR 

therapy (Aisner and Marshall, 2012, Sakashita et al., 2014, Alamgeer et al., 2013, 

Moran, 2011). Gefitinib and erlotinib are two EGFR tyrosine kinase inhibitors (TKIs) 

currently in use for the treatment of locally advanced or metastatic NSCLC 

presenting EGFR mutations. By targeting EGFR intracellular domain, they block 

downstream signalling pathways that regulate proliferation and apoptosis (Sakashita 

et al., 2014, Alamgeer et al., 2013, Molina et al., 2008, Pallis, 2012). When compared 

with standard chemotherapy, EGFR TKIs provide less toxicity and an improvement in 

cancer-related symptoms (Alamgeer et al., 2013). Also, other agents are being 

developed in order to overcome acquired resistance to EGFR TKIs (Alamgeer et al., 

2013). That is the case of afatinib, an orally available irreversible inhibitor of EGFR 

and human epidermal growth factor receptor 2 (HER2) kinases, dacomitinib, another 

irreversible inhibitor of EGFR, HER2 and HER4 (Alamgeer et al., 2013), and 

PF00299804 (Moran, 2011) (Erro! Auto-referência de marcador inválida.) 

 In turn, bevacizumab is a monoclonal antibody that targets vascular 

endothelial growth factor (VEGF), which is essential for angiogenesis, a prerequisite 

for the development of solid tumours and the growth of secondary metastatic lesions 

(Pallis, 2012, Pillai and Owonikoko, 2014, Molina et al., 2008). Similarly, sorafenib is 

used as a multitargeted antiangiogenic agent, binding VEGF receptor (VEGFR) and 

platelet-derived growth factor receptor β (PDGFR-β), for instance (Moran, 2011) 

(Erro! Auto-referência de marcador inválida.). 

 Another relevant gene in the context of lung cancer treatment is the anaplastic 

lymphoma kinase (ALK) gene, which shows rearrangements in about 5-7% of lung 

adenocarcinomas (Aisner and Marshall, 2012, Alamgeer et al., 2013, Berge and 

Doebele, 2014). A fusion gene comprising ALK and echinoderm microtubule 

associated protein-like 4 (EML4), EML4-ALK, is responsible for ALK constitutive 

activation (Alamgeer et al., 2013, Moran, 2011). Crizotinib is an ALK TKI that causes 

cell cycle arrest in the G1-S phase and induces apoptosis, also presenting activity 

against tumours with c-MET amplification and c-ROS kinase mutations (Alamgeer et 
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al., 2013, Berge and Doebele, 2014, Ulivi et al., 2013). It is expected to be the 

standard of care for ALK positive NSCLC patients in a near future (Alamgeer et al., 

2013, Berge and Doebele, 2014). 

 Activating mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) 

gene account for 30% of all mutations in lung adenocarcinoma and are mutually 

exclusive with EGFR or ALK mutations (Aisner and Marshall, 2012, Alamgeer et al., 

2013, Moran, 2011). They predict resistance to EGFR TKIs and are indicative of a 

poor prognosis, regardless of the type of therapy (Alamgeer et al., 2013). Unlike ALK 

gene fusions and EGFR mutations, KRAS mutations are less frequent in never-

smokers than in current/light smokers (Berge and Doebele, 2014). Although KRAS 

mutations are frequent in NSCLC, several attempts to develop an efficient inhibitor 

have been unsuccessful. Nonetheless, the development of inhibitor molecules for 

downstream targets of KRAS, such as mitogen-activated protein kinase kinase 

(MET), proto-oncogene c-RAF (RAF), extracellular-signal-regulated kinase (ERK) 

and the phosphatidylinositol 3-kinase (PI3K)/ mammalian target of rapamycin 

(mTOR) pathway is being pursued (Ulivi et al., 2013, Alamgeer et al., 2013, Berge 

and Doebele, 2014). 

 The list of other potential targets with therapies under development is 

extensive, including: c-ROS oncogene 1, receptor tyrosine kinase (ROS1); human 

epithelial receptor 2 (HER2); protein kinase B (Akt1); MAPK kinase 1 (MAP2K1 or 

MEK1); c-MET (encoding for hepatocyte growth factor receptor, HGFR); rearranged 

in transfection (RET); V-raf murine sarcoma viral oncogene homologue B1 (BRAF); 

insulin-like growth factor receptor 1 (IGFR1); fibroblast growth factor receptor 

(FGFR1); discoidin domain receptor 2 (DDR2); neurotrophic tyrosine kinase, 

receptor, type 1 (NTRK1); phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic 

protein alpha (PIK3CA); mammalian target of rapamycin (mTOR) (Sakashita et al., 

2014, Alamgeer et al., 2013, Berge and Doebele, 2014, Aisner and Marshall, 2012). 

 In parallel with the approaches discussed so far, a considerable effort is being 

made in order to identify new predictive biomarkers and molecular targets that 

characterize lung cancer subtypes, thereby optimizing therapeutics and overcoming 

acquired resistance issues. 
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3. Current lung cancer treatments 

 The treatment approach for lung cancer may be different according to the 

stage and type/subtype. 

 In this section, some of the main treatments currently in use for the two most 

common lung cancers (NSCLC and SCLC), both classic approaches and targeted 

treatments, will be reviewed. 

 

 

3.1. Classical approaches for lung cancer 

  NSCLC treatment may consist of different approaches applied alone or in 

combination, such as: surgery, radiation, chemotherapy, and targeted treatments 

(LungCancer.org, 2014b). 

Most of the stage I and stage II non-small cell lung cancers are treated with surgery 

to remove the tumour, which consists of removing the lobe or a section of the lung 

containing the tumour (LungCancer.org, 2014b). Before surgery, chemotherapy may 

be applied with the purpose of shrinking the tumour, sometimes along with radiation 

therapy, which is also known as neoadjuvant therapy (ACS, 2014a).  

When non-small cell lung tumours can be surgically removed, chemotherapy after 

surgery (known as adjuvant chemotherapy) (ACS, 2014a) may help to prevent the 

cancer from returning, which is particularly true for patients with stage II and IIIA 

disease (LungCancer.org, 2014b). 

 In stage III lung cancer cases that cannot be surgically removed, 

chemotherapy in combination with definitive (high-dose) radiation treatments is 

recommended (LungCancer.org, 2014b). 

For stage IV lung cancer cases, chemotherapy is typically the main treatment, while 

radiation therapy may be used for palliative purposes (LungCancer.org, 2014b). 

Chemotherapy may also be the main treatment for people who are not healthy 

enough for surgery (ACS, 2014a). 

Usually, the treatment for non-small cell lung cancer comprises the combination of 

two drugs, with the exception of those patients who might not tolerate combination 

chemotherapy (because of a poor overall health or because they are elderly), to 

whom a single-drug therapy is applied (ACS, 2014a). 
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The chemotherapy treatment scheme often consists of a combination of drugs, with 

the most commonly used being the following: cisplatin (Platinol®), carboplatin 

(Paraplatin®), docetaxel (Taxotere®), gemcitabine (Gemzar®), paclitaxel (Taxol®), 

vinorelbine (Navelbine®), pemetrexed (Alimta®) (LungCancer.org, 2014b, ACS, 

2014a), albumin-bound paclitaxel (nab-paclitaxel; Abraxane®), irinotecan (Campto®), 

etoposide (Vepesid®), and vinblastine (Velbe®) (ACS, 2014a). 

Combination chemotherapy often includes either cisplatin or carboplatin plus one 

other drug (ACS, 2014a). Instead, combinations such as gemcitabine with vinorelbine 

or paclitaxel may be used (ACS, 2014a). 

For advanced lung cancer cases that meet certain criteria, targeted therapies (which 

will later be addressed) such as cetuximab or bevacizumab may be added to the 

treatment (ACS, 2014a). 

When the initial chemotherapy for advanced lung cancer stops working, a second-

line treatment with a single drug such as docetaxel or pemetrexed may be used 

(ACS, 2014a). 

Both the switch to a different drug, prior to cancer progress, and the maintenance of 

one of the drugs initially used for a longer period have been tested, having shown to 

have different degrees of success with selected sets of patients (LungCancer.org, 

2014b). 

As far as small cell lung cancer is concerned, chemotherapy is the main treatment 

(regardless of the stage) (LungCancer.org, 2014a), given as a combination of two 

drugs at first (ACS, 2014c). Depending on the stage, radiation treatment also may be 

used (LungCancer.org, 2014a). 

The combinations of drugs that are commonly used are cisplatin and etoposide, 

carboplatin and etoposide, cisplatin and irinotecan, carboplatin and irinotecan (ACS, 

2014c). Other chemotherapeutic drugs may be used if the cancer progresses during 

treatment or returns after treatment is finished (ACS, 2014c). 

Limited-stage small cell lung cancer is usually treated with a combination of a 

chemotherapy regimen (consisting of etoposide plus cisplatin) plus radiation therapy 

given at the same time (LungCancer.org, 2014a, NCI, 2014d). 

Extensive-stage small cell lung cancer is usually treated with the same 

chemotherapy regimen alone; however, other regimens comprising carboplatin plus 

irinotecan (LungCancer.org, 2014a), carboplatin plus etoposide, and cisplatin plus 

irinotecan (NCI, 2014c) may be used. 



Introduction 

14 

Radiation therapy of the brain may be used before or after chemotherapy for some 

people whose cancer has spread to this tissue (LungCancer.org, 2014a). 

Surgery may only be beneficial in limited-stage small cell lung cancer and no lymph 

node tumour cases, after which adjuvant chemotherapy may be given 

(LungCancer.org, 2014a). 

 

 

3.2. Targeted therapies for lung cancer 

 Targeted therapies are one of the most promising developments in lung 

cancer medicine (LungCancer.org, 2014b). Unlike chemotherapy drugs (which are 

unspecific for cancer cells), targeted therapies are designed to specifically target 

cancer cells by attaching to or blocking molecular targets on their surfaces 

(LungCancer.org, 2014b) (which are involved in tumour growth and progression 

(Widakowich et al., 2007)), and may be addressed alone or in combination with 

chemotherapy to advanced lung cancer cases with specific molecular biomarkers 

(LungCancer.org, 2014b, ACS, 2014d). In addition, targeted therapies sometimes 

work when chemotherapy fails, and often have different and less severe side effects 

(LungCancer.org, 2014b). 

Biomarkers are found on the surface of the cells, or in the genes that program 

cells, and their presence (such as EGFR, ALK, and KRAS 1) may help to decide 

which treatment options would work best, with less side effects, and avoid 

therapeutic strategies that are unlikely to work (LungCancer.org, 2014b). 

Currently, there are many different types of targeted therapies being used to treat 

cancer and new ones are coming out all the time (ACS, 2013a). The two main types 

of molecules used as targeted therapy drugs consist of antibody drugs (such as 

cetuximab and bevacizumab), and small-molecule drugs (such as Gefitinib and 

erlotinib) (ACS, 2013a, Widakowich et al., 2007). 

Targeted therapies currently being used against non-small cell lung cancer may be 

categorized in three main groups: drugs that target EGFR (such as tyrosine kinase 

inhibitors – erlotinib and gefitinib; and cetuximab – a monoclonal antibody against 

EGFR); drugs that target tumour blood vessel growth (angiogenesis) (VEGF 

inhibitors such as bevacizumab); and drugs that target the mutated ALK protein 

(crizotinib and ceritinib) (ACS, 2014d, LungCancer.org, 2014b). 
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 EGFR is a transmembrane protein that is exposed at cell surface, and has an 

internal tyrosine kinase domain (Derer et al., 2012, Robinson and Sandler, 2013). 

The activation of this receptor by ligands (such as EGF or transforming growth factor-

α) leads to the activation of multiple pathways that promote cell survival, proliferation, 

angiogenesis and metastasis (Weihua et al., 2008, Robinson and Sandler, 2013). It 

is commonly overexpressed or aberrantly active in epithelial cancers, which inhibition 

has been shown to be a successful strategy in the treatment of NSCLC (D'Arcangelo 

and Hirsch, 2014). Once it is a widely expressed antigen, it is successfully targeted in 

tumour patients by monoclonal antibodies or tyrosine kinase inhibitors (Derer et al., 

2012). 

Cetuximab is a chimeric human-mouse monoclonal antibody that targets EGFR 

(Carillio et al., 2012, Pirker, 2013), and may be a used to treat patients with 

advanced NSCLC along with standard chemotherapy as part of first-line treatment 

(Pirker, 2013). It binds to the external domain of the EGFR and competitively blocks 

the binding of EGF, inhibiting signal transduction (Pirker, 2013). Antibody receptor 

complexes are then internalized and degraded (Pirker, 2013). This process leads to 

receptor downregulation on the surface of tumour cells (Pirker, 2013). Cetuximab 

may also act via antibody-dependent cell-mediated cytotoxicity and complement-

dependent cytotoxicity (Pirker, 2013). A positive correlation between EGFR 

expression levels and the therapeutic efficacy of cetuximab in NSCLC patients has 

already been demonstrated (Derer et al., 2012). It is currently still being evaluated in 

clinical studies in patients with NSCLC, primarily in combination with first-line 

chemotherapy in patients with advanced NSCLC (Pirker, 2013). It is not FDA 

approved for NSCLC; however, since it is approved for use against other cancers 

(colorectal, head, and neck cancers), it may be used for NSCLC (ACS, 2014d). 

Erlotinib (Tarceba®) and gefitinib (Iressa®) were the first two targeting agents to be 

approved for clinical use in advanced NSCLC all over the world, with diverse 

indications (D'Arcangelo and Hirsch, 2014, Sui et al., 2014). They are two small 

molecules that selectively inhibit the tyrosine kinase activity of EGFR (and thus block 

cell growth signalling), and both have reversible binding features (D'Arcangelo and 

Hirsch, 2014). These molecules have shown an impressive activity against lung 

cancer cells with activating mutations of the EGFR gene (D'Arcangelo and Hirsch, 

2014). Although EGFR-mutant patients have higher response rates, better quality of 

life, and longer progression free survival, all patients eventually develop resistance, 
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mutations in the tyrosine kinase domain render tumours resistant to erlotinib and 

gefitinib (Robinson and Sandler, 2013). 

A second generation of EGFR inhibitors is currently in an advanced stage of tests, 

showing promising results regarding their abilities to overcome resistance 

mechanisms, provide a sustained response through irreversible inhibition and target 

additional HER receptors (Robinson and Sandler, 2013). 

Having initial reversible EGFR TKIs (erlotinib and gebitinib) as models, several 

irreversible EGFR binders are being developed (Robinson and Sandler, 2013). 

Afatinib is small molecule that irreversibly inhibits both EGFR and HER2 (Robinson 

and Sandler, 2013), and was approved to be used, without chemotherapy, as the first 

treatment for advanced NSCLC that have certain mutations in the EGFR gene (ACS, 

2014d). 

Cells that have a mutation on the EGFR are likely to respond to treatment with 

erlotinib, gefitinib, and afatinib instead of chemotherapy (LungCancer.org, 2014b, 

Kohler and Schuler, 2013). 

 Vascular endothelial growth factor (VEGF) is a protein that stimulates the 

formation of new blood vessels (angiogenesis), which supply the tumours with 

nutrients, allowing their growth (Pallis, 2012, Pillai and Owonikoko, 2014, Molina et 

al., 2008). bevacizumab (Avastin®) is a recombinant monoclonal antibody that targets 

VEGF (Pal et al., 2010) and works by stopping it from stimulating the growth of new 

vessels (normal tissues are not affected by this drug) (LungCancer.org, 2014b). It 

was approved by the US FDA as a first-line therapy, in combination with carboplatin 

and paclitaxel, against metastatic NSCLC (Jardim et al., 2012). The addition of 

bevacizumab or cetuximab to chemotherapy has shown promising benefits to the 

patients with NSCLC (Wang et al., 2013). 

 About 5% of NSCLC have been found to have a rearrangement in a gene 

called ALK (ACS, 2014d). This rearrangement is most often seen in non-smokers (or 

light smokers) who have the adenocarcinoma subtype of NSCLC (ACS, 2014d). The 

ALK gene rearrangement produces an abnormal ALK protein that causes the cells to 

grow and spread (ACS, 2014d). Overactivation of the ALK gene has been reported in 

several types of malignancies including NSCLC (Murga-Zamalloa and Lim, 2014). It 

was shown to be an oncogenic signature that results in tumour dependence on ALK 

(Murga-Zamalloa and Lim, 2014). 
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 Crizotinib (Xalkori) is a multitargeted small molecule tyrosine kinase inhibitor 

(Sahu et al., 2013). It was originally developed as an inhibitor of the mesenchymal 

epithelial transition growth factor (c-MET), and is also a potent inhibitor of ALK 

phosphorylation and signal transduction (Sahu et al., 2013). This inhibition leads to a 

G1-S phase cell cycle arrest and induction of apoptosis in positive cells (Sahu et al., 

2013). Crizotinib also inhibits the related ROS1 receptor tyrosine kinase (Sahu et al., 

2013). It is an available treatment that has shown benefits for advanced non-small 

cell lung cancer patients who have the ALK biomarker (LungCancer.org, 2014b), 

even those who have already had chemotherapy (ACS, 2014d). It is now often the 

first drug used (instead of chemotherapy) in patients with the ALK gene 

rearrangement (ACS, 2014d).  

NSCLC cases that present ALK gene rearrangements invariably develop resistance 

to Crizotinib (Friboulet et al., 2014, Sahu et al., 2013). Ceritinib (Zykadia®) is a new 

FDA-approved ALK TKI (FDA, 2014) that can overcome crizotinib resistance 

(Friboulet et al., 2014). Its use is approved to treat patients with this subtype of 

metastatic NSCLC, that were previously treated with crizotinib (FDA, 2014) 

Nevertheless, targeted therapies have currently no proven efficacy against small cell 

lung cancer (Jett et al., 2013). 

 

 

 

4. Methodologies to synthetize antibody conjugates  

 

 

4.1. Antibody modification and conjugation 

The ability to conjugate an antibody to another molecule is critically important 

for many applications in life science research, diagnostics, and therapeutics.  

Antibody conjugates have become one of the most important classes of biological 

agents associated with targeted therapy for cancer and other diseases. There literally 

are dozens of markers that have been identified on tumour cells to which monoclonal 

antibodies have been developed for targeted therapy (Carter et al., 2004). The 

preparation of antibody conjugates to find and destroy cancer cells in vivo has 

become one of the leading strategies of research into investigational new drugs 
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(McCarron et al., 2005). In most cases, the site-specific delivery of drugs involves the 

successful development of defined monoclonal antibody conjugates that can target 

diseased cells without affecting normal ones (Hermanson, 2008). 

 

 
Fig. 2 - Detailed structure of an IgG antibody mole cule. 

Figure adapted from (Hermanson, 2008) 

 

 

4.2. Zero-length crosslinkers, their advantages and  disadvantages 

 

4.2.1. Carbodiimides 

Recurring to zero-length crosslinkers is one of the most used chemical 

techniques to conjugate antibodies to other molecules. Being our target the 

conjugation of a relatively small antibody with a large molecule such as LMWChi, it 

was important not to create much embarrassment with a long connection between 

molecules. Moreover LMWChi has several amine groups that could interfere with the 

activated carboxyl groups in the heavy chains of the antibody  

Carbodiimides are zero-length crosslinking agents used to mediate the formation of 

an amide or phosphoramidate linkage between a carboxylate group and an amine or 

a phosphate and an amine, respectively (Hoare and Koshland, 1966, Chu et al., 
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1986, Ghosh et al., 1990). These are called zero-length reagents because in forming 

these bonds no additional chemical structure is introduced between the conjugating 

molecules.  

 

4.2.1.1. EDC and NHS  

 EDC (or EDAC; 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride) 

is the most popular carbodiimide used for conjugating biological substances 

containing carboxylates and amines. In fact, it also may be the most frequently used 

crosslinking agent of all. Its application in particle and surface conjugation 

procedures along with NHS ( N -hydroxysulfosuccinimide) or sulfo-NHS is nearly 

universal which leads it to being the most common bioconjugation reagent in use 

today (Hermanson, 2008). 

EDC reacts with carboxylic acid groups to form an active O-acylisourea 

intermediate - extremely short-lived - that is easily displaced by nucleophilic attack 

from primary amino groups in the reaction mixture (Fig. 3 ). The primary amine forms 

an amide bond with the original carboxyl group, and an EDC by-product is released 

as a soluble urea derivative ( 

Fig.  4) (Williams and Ibrahim, 1981).  

The O-acylisourea intermediate is unstable in aqueous solutions; failure to react with 

an amine results in hydrolysis of the intermediate, regeneration of the carboxyls, and 

the release of an N-unsubstituted urea. 

Other nucleophiles also are reactive. Sulfhydryl groups may attack the active species 

and form thioester linkages, even though these are not as stable as the bond formed 

with an amine. 

 

 

Fig. 3 - Carboxylic acids reacting with activated N -substituted carbodiimides (EDC) to form 
highly reactive, o-acylisourea derivatives that are  extremely short-lived.  

Figure adapted from (Hermanson, 2008) 
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Fig. 4 - The active species reacting with a nucleop hile (primary amine) to form an amide bond. 

Figure adapted from (Hermanson, 2008) 

 

 

In addition, oxygen atoms may act as the attacking nucleophile, such as those in 

water molecules. With this said, in aqueous solution, hydrolysis by water is the major 

competing reaction and a disadvantage of this linkers, both inactivating EDC itself 

and cleaving off the activated ester intermediate, forming an isourea, and 

regenerating the carboxylate group (Gilles et al., 1990). 

Results indicate that carboxylate activation occurs most effectively at pH 3.5–4.5, 

while amide bond formation occurs with highest yield at pH 4–6. However, the 

maximal rate of hydrolysis of EDC occurs at acidic pH values with increasing stability 

of the carbodiimide in solution at or above pH 6.5 (Nakajima and Ikada, 1995). 

When working with proteins and peptides, fabricants and literature indicate that EDC-

mediated amide bond formation effectively occurs approximately between pH 4.5 and 

7.5. Buffer systems using MES or phosphate are advisable in order to stabilize the 

pH during the course of the reaction.  

Furthermore molecules containing phosphate groups, such as the 5-phosphate of 

oligonucleotides, may also be conjugated to amine-containing molecules through a 

carbodiimide-mediated reaction (Fig. 5 ). 
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Fig. 5 - The carbodiimide activates the phosphate t o an intermediate phosphate ester similar to 

its reaction with carboxylates. In the presence of an amine, the ester reacts to form a stable 
phosphoramidate bond.  

Figure adapted from (Hermanson, 2008) 

 

EDC has been used in a wide range of applications such as forming amide 

bonds in peptide synthesis, attaching haptens to carrier proteins to form 

immunogens, labeling nucleic acids through 5’ phosphate groups and creating 

amine-reactive NHS-esters of biomolecules. 

N-hydroxysuccinimide (NHS) or its water-soluble analog (Sulfo-NHS) is often 

included in EDC coupling protocols to improve efficiency or create dry-stable (amine-

reactive) intermediates. EDC couples NHS to carboxyls, forming an NHS ester that is 

considerably more stable than the O-acylisourea intermediate while allowing for 

efficient conjugation to primary amines at physiologic pH. 

 

 

4.3. Removal of unconjugated compounds from conjuga tes 

Conjugates of antibodies and enzymes or other compounds are critical 

components in immunoassay, detection systems and development of targeted 

therapies. During preparation of the referred conjugates, a molar excess of enzyme, 

peptide, or polymer typically is cross-linked to a specific antibody to obtain a 

conjugate of high activity. The result of this ratio is excess left unconjugated after 

completion of the reaction. The unconjugated reagents confer nothing to the utility of 

the final product and can be detrimental by contributing to increased backgrounds in 

assay procedures. With this said the removal of these secondary components it is 

crucial either as an advantage to improve the resultant signal-to-noise ratio in some 

assays, or simply because they will interfere with the conjugate detection and 

characterization.  
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Commercial preparations of antibody–enzyme conjugates usually are not purified to 

remove unconjugated enzyme. Frequently, the major proteinaceous part of these 

products is not the active conjugate, but leftover peptide or polymer that contributes 

nothing to the immunochemical activity of what was purchased. Just as an example, 

unconjugated HRP must be removed from antibody–enzyme/peptide conjugates to 

obtain optimal staining in immunoassay procedures (Boorsma and Kalsbeek, 1975).  

In this work specific case, the presence of unconjugated protein (cetuximab) leads to 

diffuse substrate noise that can obscure FTIR analyses and specially protein 

quantification methods such as Bradford Method. Several methods may be used to 

purify an antibody–polymer/protein conjugate and remove unconjugated enzyme. For 

instances: recurring to HPLC, simple dialysis, gel filtration, or through disposable 

centrifugal devices for concentration and diafiltration of samples. Being the last 

method chosen for our project as it easily separated all the unreacted compounds at 

once, is fast, reliable and less expensive than the others. 

 

 

 

5. Polymeric nanoparticles 

 

 

5.1. Nanocarriers and nanoparticles  

Growing interest in nanotechnology-based drug delivery systems within the 

pharmaceutical technology domain has significantly raised their market potential and 

diversity (Akhter et al., 2013). Based on their structure and properties, nanocarriers 

are currently organized into several different classes, comprising liposomes, 

niosomes, polymeric micelles, polymeric nanoparticles, solid lipid nanoparticles, 

inorganic nanoparticles, magnetic nanoparticles, dendrimers, virus-based platforms, 

carbon nanotubes and quantum dots (Akhter et al., 2013, Jin et al., 2014, Tzeng and 

Green, 2013). Polymeric nanoparticles were the subject under study in the present 

work, for which they will be addressed in further detail.   

Polymeric nanoparticles are those obtained through drug encapsulation, dissolution 

or entrapment within nanosized particles or drug attachment to a polymeric matrix 

(Akhter et al., 2013). They may be defined as colloidal systems, which size may 
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range from 5-10 nm to 1000 nm, although their most common size is about 100-500 

nm (Lu et al., 2011).  

The term ‘‘polymer nanoparticles’’ comprises any type of polymer nanosized 

particles, encompassing polymer nanospheres and nanocapsules (Lu et al., 2011). 

Polymer nanospheres are matrix particles, whose entire mass is solid. They may be 

used as carriers for other biologically active molecules (e.g., drugs, genes, 

fluorescent and other functional materials), either adsorbed at the surface or 

encapsulated within the particle. In turn, polymer nanocapsules are vesicular 

systems in which the bioactive agents are entrapped in an aqueous core and 

surrounded by the polymeric shell (Lu et al., 2011). Several approaches have been 

used to synthesize polymeric nanoparticles, according to their application and type of 

bioactive molecules or medical drugs encapsulated (Kumari et al., 2010). Fig. 6  

depicts the different types of biodegradable nanoparticles that may be obtained from 

various methods of encapsulation (Kumari et al., 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 - Different types of biodegradable nanoparti cles according to their structural 
organization. 

Figure adapted from (Kumari et al., 2010) 
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5.2. Types of polymers used in polymeric nanopartic les  

 The encapsulation process with polymeric nanoparticles is in a more 

advanced condition than that of other nanoparticle systems (Kumari et al., 2010). 

During the past two decades, many nanomedicines synthesized from biocompatible 

and biodegradable polymers have arisen and were improved (Kumari et al., 2010). 

All of the nanomedicine formulation features (including maximum encapsulation 

efficiency) depend on the choice of a suitable polymeric system (Kumari et al., 2010). 

Some of the most commonly and extensively used include chitosan, PLGA (poly-d,l-

lactide-co-glycolide), PLA (polylactic acid), PCL (poly-ε-caprolactone), gelatin, and 

PAC (poly-alkyl-cyano-acrylates) (Kumari et al., 2010, Akhter et al., 2013). Natural 

polymers also comprise starch, polypeptides, albumin, sodium alginate, chitin, 

cellulose, and polyhydroxyalkanoates (PHAs), while polyethylene glycol (PEG), 

polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), polyethylene (PE), 

polyanhydrides, and poly-orthoesters are other common synthesis polymer materials 

(Lu et al., 2011). Natural polymers are generally biodegradable, while some of the 

synthesis polymers are not, which make the former preferable (Lu et al., 2011). 

 

 

5.3. Advantages of biodegradable polymeric nanopart icles as carriers 

Biodegradable nanoparticles have been used in order to improve the 

therapeutic value of many water soluble/insoluble medicinal drugs and bioactive 

molecules by improving their bioavailability, solubility and retention time, and by 

decreasing toxicity risks (Kumari et al., 2010, Akhter et al., 2013). In fact, the 

nanoencapsulation of drugs (nanomedicine) increases their efficacy, specificity, 

tolerability and therapeutic index (Kumari et al., 2010). These formulations offer 

protection from premature degradation and enhance the interaction with the 

biological environment, absorption into a selected tissue, bioavailability, retention 

time and intracellular penetration (Kumari et al., 2010). Besides, under in vivo 

enzyme action, biodegradable nanoparticles can produce water and carbon dioxide 

without adverse effects, and have thus become the focus of increasing research 

(Wang et al., 2011). 
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Biodegradable polymeric nanoparticles are therefore preferred because of their 

potential as drug delivery systems, because of their controlled/sustained release 

properties, subcellular size and biocompatibility with tissue and cells (Kumari et al., 

2010). Moreover, these formulations are stable in blood, non-toxic, non-

thrombogenic, non-immunogenic, non-inflammatory, do not activate neutrophils, 

avoid the reticuloendothelial system, are biodegradable and applicable to various 

molecules such as drugs, proteins, peptides, or nucleic acids (Kumari et al., 2010). 

 Many drugs/bioactive molecules (for the treatment of many diseases such as 

cancer, AIDS, diabetes, malaria, prion disease and tuberculosis) have been 

successfully encapsulated in order to improve their bioavailability, bioactivity and 

delivery control (Kumari et al., 2010). In particular, polymeric nanoparticles are the 

vehicles chosen for various anticancer agents. For instance, a copolymer of N-(2-

hydroxypropyl) metacrylamide/camptothecin and a NK-105 (PEG-polyaspartate) 

nanoparticle of cisplatin are in different stages of development (Akhter et al., 2013). 

Furthermore, paclitaxel, cisplatin and folate have been included in polymeric 

nanoparticles, with a consequent enhancement of solubility, targeting, cytotoxicity 

and sustained release profile, when compared with the corresponding free solutions 

(Akhter et al., 2013). 

 

 

5.4. Nanoparticle morphological remarks  

As before mentioned, when compared with conventional approaches, 

nanoformulations are advantageous regarding released control, targeted delivery and 

therapeutic impact, for instance (Kumari et al., 2010). Targeting abilities are 

modulated by particle size, surface charge, surface modification, and hydrophobicity, 

with the size and size distributions of nanoparticles being determinant in their 

interaction with the cell membrane and their penetration across the physiological 

barriers (Kumari et al., 2010). The release profile may be controlled by the molecular 

weight of the polymer (Kumari et al., 2010). In fact, the rate of drug release is 

inversely proportional to the polymer molecular weight (Kumari et al., 2010). The 

appropriate size for nanoparticles to cross different biological barriers is dependent 

on the tissue, target site and circulation (Kumari et al., 2010, Yousefi et al., 2013, 

Tzeng and Green, 2013). In other words, the in vivo performance of nanoparticles is 
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influenced by parameters such as their morphological features, surface chemistry, 

and molecular weight (Kumari et al., 2010).  

Since electrostatic interaction increases the rate and extent of nanoparticle 

internalization, and since cell surface is assumed to have a negative charge, cationic 

nanoparticles are preferable (Kumari et al., 2010). This would also prevent their 

clustering in the blood flow (Kumari et al., 2010). 

The design of these delivery systems, taking into account the nanoparticle features, 

target and route of administration, may solve the problems associated with new 

classes of active molecules (Kumari et al., 2010). 

 

 

5.5. Nanoparticle modification, passive and active targeting 

The persistence of the nanoparticles in systemic circulation – which is a 

drawback for the conventional nanoparticles with hydrophobic surface, which are 

easily opsonized and cleared by the mononuclear phagocytic system – is required for 

the success of targeted delivery (Kumari et al., 2010, Yousefi et al., 2013, Tzeng and 

Green, 2013, Jin et al., 2014). In this sense, the surface of conventional 

nanoparticles can be modified with different molecules in order to increase the 

circulation time and persistence in the blood (Kumari et al., 2010, Yousefi et al., 

2013, Tzeng and Green, 2013). In fact, the coating of hydrophilic polymers creates a 

cloud of chains around the particle that repels the plasma proteins (Kumari et al., 

2010). Surface-modified nanoparticles have anti-adhesive properties because of the 

extended configuration on the particle surface, which acts as a steric barrier, 

reducing the extent of clearance by the circulating macrophages, and improving the 

permeation process (Kumari et al., 2010, Yousefi et al., 2013, Tzeng and Green, 

2013).  

Modified nanoparticles also have other properties such as improved drug targeting 

(Wang et al., 2011, Tzeng and Green, 2013). Two distinct approaches may be 

explored in order to target nanoparticles to their sites of interest: passive and active 

targeting (Akhter et al., 2013, Jin et al., 2014, Yu et al., 2012, Master and Sen Gupta, 

2012).  

Passive targeting makes use of the enhanced permeation and retention (EPR) effect 

that characterizes tumor microenvironment, due to its high vascularization, high 
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vascular permeability, leakage and defective lymphatic drainage, leading to 

increased retention of extravasated molecules and nanoparticles (Akhter et al., 2013, 

Jin et al., 2014, Yu et al., 2012, Master and Sen Gupta, 2012). Given that 

nanoparticles with 10-100 nm sizes have been shown to accumulate in tumor tissue 

via EPR effect, both their size and surface may be tailored to avoid phagocytosis and 

promote accumulation (Akhter et al., 2013, Jin et al., 2014, Yu et al., 2012).  

In turn, active targeting is based on the specific interaction between a ligand-

presenting nanoparticle and the receptors exposed at the surface of target cells. In 

fact, the surface of polymer nanoparticles may be functionalized with metal ions, 

small molecules, peptides, nucleic acids (aptamers), antibodies, vitamins, 

carbohydrates, surfactants, or polymers, in order to avoid immunological reactions 

and to obtain better targeting and binding with ligands (Lu et al., 2011, Yu et al., 

2012). This interaction not only promotes nanoparticle accumulation in the tumor, but 

also its uptake by the tumor cell through receptor-mediated endocytosis (Akhter et 

al., 2013, Jin et al., 2014, Yu et al., 2012, Master and Sen Gupta, 2012). In fact, 

many tumor cells over-express one or more molecular targets that can be addressed 

by nanocarriers (Akhter et al., 2013, Master and Sen Gupta, 2012). For instance, 

approaches using peptides and targeting folate receptors, tumor necrosis factor 

receptor CD95, transmembrane tyrosine kinase receptors (e.g., HER2, EGFR), 

luteinizing hormone-releasing hormone receptors, vasoactive intestinal peptide 

receptors and integrins are currently available (Akhter et al., 2013). Following 

endocytosis, the drugs carried by the nanoparticle are processed within lysosomes, 

avoiding multi-drug resistance mechanisms because endocytosed nanoparticle-

associated drugs or drug-polymer conjugates cannot be pumped by proteins such as 

glycoprotein-P (Akhter et al., 2013). 

The use of drug-antibody conjugates is a particular form of active targeting that 

explores the affinity of monoclonal antibodies for specific antigens (Akhter et al., 

2013, Jin et al., 2014). For instance, brentuximab vedotin, which binds CD30, a 

tumor-specific marker of the tumor necrosis factor receptor superfamily, has recently 

been approved for the treatment of Hodgkin and systemic anaplastic large cell 

lymphomas. Furthermore, inotuzumab ozogamicin and trastuzumab emtansine 

(targeting CD22 and HER2, respectively) have shown significant clinical activity in 

phase 3 clinical trials for non-Hodgkin lymphoma, acute lymphocytic leukemia and 

metastatic breast cancer (Akhter et al., 2013, Jin et al., 2014). 
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As already mentioned, EGFR, a transmembrane receptor that is overexpressed in 

several cancers, including gliomas, ovarian, head and neck, renal, pancreatic, colon 

and NSCLC, is also targeted by nanoparticles conjugated with antibodies, including 

necitumumab, matuzumab, panitumumab, trastuzumab and cetuximab (Master and 

Sen Gupta, 2012, Maya et al., 2013). It should be further mentioned that the use of 

other agents, including antibody fragments, peptides, aptamers and the EGF itself, is 

also being developed as an active targeting methodology (Master and Sen Gupta, 

2012). 

In particular, cetuximab-conjugated O-carboxymethyl chitosan nanoparticles for 

targeting EGFR-overexpressing cancer cells have been successfully prepared by the 

research team, and were shown to be internalized by tumor cells, causing their death 

(Maya et al., 2013). cetuximab-conjugated chitosan nanoparticles are, in fact, the 

scope of the present work. 

 

 

5.6. Chitosan polymeric nanoparticles 

 Chitosan nanoparticles are drug carriers that may solve many problems 

related to drug poor stability, water insolubility, low selectivity, high toxicity, side 

effects, and many others (Wang et al., 2011). As a natural product, chitosan is a 

renewable pharmaceutical adjuvant, with good biocompatibility (Wang et al., 2011, 

Singh et al., 2014, Lai et al., 2014, Maya et al., 2013).  

These nanoparticles have wide development potential and show the advantage of 

slow/controlled drug release, which improves drug solubility and stability, enhances 

efficacy, and reduces toxicity (Wang et al., 2011, Singh et al., 2014, Lai et al., 2014). 

Because of their small size, they can easily pass through biological barriers in vivo 

(such as the blood–brain barrier), deliver drugs to the lesion site and enhance their 

efficacy (Wang et al., 2011, Tzeng and Green, 2013). These advantages confer 

chitosan and its derivatives a strong potential for application as drug carriers, 

allowing them to carry drugs as diverse as genes, proteins, anticancer agents, 

antibiotics, antivirals, anti-allergic agents and hormones, and to be suitable for 

various routes of administration – oral, nasal, intravenous, and ocular (Wang et al., 

2011). 
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 Chitosan adhesiveness, biodegradability, safety, and anti-tumor effect 

particularly stand out for their clinical relevance (Wang et al., 2011, Singh et al., 

2014, Maya et al., 2013). 

 Biodegradability is obviously an important feature for any drug delivery system 

(Wang et al., 2011, Singh et al., 2014). Chitosan of a suitable molecular weight can 

be cleared by the kidney in vivo, while the excessive molecular weight molecules can 

be degraded into fragments that are suitable for renal clearance (Wang et al., 2011). 

Chitosan is degraded mainly by chemical processes and enzyme catalysis (which is 

the major in vivo process) (Wang et al., 2011). The higher the degree of 

deacetylation, the greater the degradation rate (Wang et al., 2011, Wang et al., 

2014). Degradation by enzyme catalysis also depends on the availability of the amino 

group (Wang et al., 2011). Presently, it is accepted that chitosan is a non-toxic 

polymer and a safe drug-delivery material, which was certified as wound dressing by 

the FDA (Wang et al., 2011). 

 Chitosan also exerts an anti-tumor effect by itself through improving the body’s 

immune function and through the direct action on tumor cells by interfering with cell 

metabolism, inhibiting cell growth, or inducing cell apoptosis (Wang et al., 2011, Qi et 

al., 2005). Many studies have already supported chitosan’s anti-tumor effects in vitro 

and in vivo, as well as the nanoparticle selectivity for tumor cells, leading to good 

prospects for their application as a supplementary anti-tumor drug and drug carrier 

(Wang et al., 2011). In fact, chitosan positive charges selectively adhere to and 

neutralize the tumor cell surface (Wang et al., 2011, Qi et al., 2005). It was also 

shown to have a targeting function to liver, spleen, lung, and colon (Wang et al., 

2011). In particular, ethylene chitosan nanoparticles have higher circulating times in 

the blood, with greater tumor cell selectivity; doxorubicin-chitosan polymeric micelles 

were able to target the liver and spleen, while significantly reducing toxicity to the 

heart and kidney (Wang et al., 2011). 

 

 

5.7. Characteristics of chitosan nanoparticles 

 Nanoparticles consist of small-sized colloid particles of 1 to 1000 nm, which 

have strong mobility, high cell uptake rate, and that can easily enter in the cells and 

accumulate at the interest site (Wang et al., 2011). 
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 Chitosan nanoparticles can release drugs/biomolecules through polymer 

degradation, which leads to a clear sustained-release effect (Wang et al., 2011). 

Because of the varied degradation rate and time of chitosan with different molecular 

weights and degrees of deacetylation, as well as other molecular modifications, 

different types of chitosan may be used to produce different types of nanoparticles 

with specific drug-release rates and, thus, achieve sustained/controlled release 

(Wang et al., 2011, Wang et al., 2014). 

 Also, in order to improve chitosan nanoparticle targeting and bioavailability, 

several approaches are being pursued, mostly focusing on chitosan modifications. 

For instance, drug release may be promoted by the changes in carrier properties 

under a specific acid-base environment. The same purpose is achieved when the 

carrier is designed to be thermo sensitive and structurally responsive to temperature 

changes (Wang et al., 2011, Singh et al., 2014). In turn, active targeting may also be 

accomplished if chitosan nanoparticles are modified in order to allow the identification 

of the proper drug targets (Wang et al., 2011). 
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Aims 
 

The main goal of this dissertation was to provide new knowledge on the most 

viable and efficient way to produce cetuximab-LMWChi conjugates in order to later 

encapsulate siRNA and target to EGFR overexpressing cells. 

The work reported in the present thesis aimed at the production of such 

conjugates through the implementation and optimization of protocols recurring to 

zero-length crosslinker chemistry, without underestimate the purification, 

evaluation/characterization of the reaction products thought FTIR, protein 

quantification methods for reaction efficiency, and cell cytotoxicity through MTT and 

LDH assays. 

Furthermore the results of the reported project aimed at being reproduced and 

applied In future studies so that new reliable target siRNA therapies can be 

synthetized recurring to cetuximab-LMWChi conjugates. 
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Materials and methods 
 

 

1. Cetuximab 

Gently provided by the Pharmaceutical services of Hospital St. António – 

Porto, clinical leftovers of MerckSerono’s 5 mg/dL cetuximab were used for the 

production of the several conjugates in this project.  

This monoclonal antibody blocks ligand binding to EGFR and prevents 

downstream signaling in EGFR overexpressing cells. It should provide us with the 

needed driver, to target in the future, by encapsulating siRNA, small cell lung cancer 

cells without affecting other cells and saving drug.  

 

 

 

2. Chitosan 

Chitosan (Fig. 7 ) physicochemical properties are greatly dependent on its 

molecular weight and degree of deacetylation (Wang et al., 2011, Wang et al., 2014, 

Lai et al., 2014). Since its glycoside bond is hemiacetal, it is unstable under acidic 

conditions, which thus favor its hydrolysis and solubilization (Wang et al., 2011). 

Chitosan becomes less viscous, with a lower molecular weight; amino acid 

protonation occurs, conferring positive charge and triggering gelation and membrane 

formation (Wang et al., 2011, Lai et al., 2014). 

 

 

 

 

 

 

 The amino and carboxyl groups in the chitosan molecule can be combined 

with mucus glycoproteins to form a hydrogen bonds, leading to an adhesive effect 

that may be strengthened under neutral and acidic conditions (Wang et al., 2011, Lai 

et al., 2014). The greater the molecular weight and higher the degree of 

Fig. 7 - Chitosan structure . 

Figure adapted from (Wang et al., 2011) 
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deacetylation of chitosan, the stronger its adhesiveness will be (Wang et al., 2011, 

Wang et al., 2014, Lai et al., 2014). 

Chitosans having lower molecular weights and lower degrees of deacetylation 

exhibit greater solubility however faster degradation than their high-molecular-weight 

counterparts.(Wang et al., 2000, Zhang and Neau, 2001, Koping-Hoggard et al., 

2004, Mao et al., 2004, Ren et al., 2005, Bowman and Leong, 2006). 

In this project all the attempts to produce conjugates recurred to Sigma 

Aldriche’s LMWChi, 4,5mg/mL and 5,0mg/mL LMWChi solutions were prepared 

through the solubilization of the previously referred LMWChi in a 1% glacial acetic 

acid solution. After dissolution pH was adjusted to 5,0 using a CRISON’s pH meter 

GLP21, while slow magnetic stirring of the solutions.   

 

 

 

3. EDC 

As previously referred EDC is a zero-length crosslinker and one of the most 

popular carbodiimide used for conjugating biological substances containing 

carboxylates and amines. In the present work Sigma-Aldrich’s EDC was used. 

 

 

 

4. NHS 

NHS, as already reported in this dissertation introduction, is often included in 

EDC coupling protocols to improve efficiency or create dry-stable (amine-reactive) 

intermediates, improving reaction efficiency. During the several conjugation attempts 

Sigma-Aldrich’s EDC was chosen.   
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5. Conjugation procedure 

The most challenging and crucial procedure, but also the main goal, of this 

project was the conjugation aiming the formation of a cetuximab-chitosan molecule; 

several were the unsuccessful attempts and protocol changes until reaching a 

satisfactory conjugate. 

 

Low molecular weight chitosan (LMWChi) may help to form small-sized polymer-DNA 

or small interfering RNA (siRNA) complexes, which made this one of the reasons why 

LMWChi was chosen.(Fernandes et al., 2012).  

Chitosan nanoparticles can be prepared using various formulation methods to 

release an active ingredient (such as proteins, peptides and DNA vaccines) in a 

sustained manner over a prolonged period. The ionic crosslinking method has 

received significant attention in recent years due to the preparation of chitosan 

nanoparticles containing proteins, peptides and vaccines due to the fact that this is 

simple and mild for proteins and viruses. It doesn’t recur to chemical cross linkers 

and avoids using organic solvents and high temperatures.(Han et al., 2010, Zhao et 

al., 2012). 

Standard biomolecular conjugation chemistries using homo- or heterobifunctional 

cross-linkers (e.g., glutaraldehyde, cross-linkers containing amine reactive N-

hydroxysuccinimidyl (NHS) ester and thiol reactive maleimide) have inherent 

drawbacks despite recent progress. These drawbacks include limited stability of the 

cross-linkers, nonselective conjugation, and self-blocking of active conjugation sites 

by the cross-linkers. (Hermanson, 2008). Even though EDC/NHS was chosen as the 

appropriate linker, as it was already available, it’s one of the most used zero-length 

cross-linkers and was compatible with the working pH and reagents to conjugate. 

Fig. 8 – Conjugation reaction scheme, representing the activation of carbonyl gro ups of CTX by 
EDC/NHS, forwarded by the conjugation with LMWChi t hrough its amine groups.  
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5.1. Procedure for EDC/NHS crosslinking of carboxyl ates with 

primary amines 

After trying several alternatives to produce a satisfactory conjugate compound 

the most satisfactory approach ended up to be the one following the next protocol.  

First and foremost the NHS ester of cetuximab had to be activated. As suggested by 

Thermo Scientific supplier as a strategy, a 10-fold molar excess of EDC were added 

directly to 1 mL of cetuximab solution of 5mg/dL (Support, 2012-2013). Then ½ molar 

of NHS relatively to 1 molar of EDC, were added to the reaction to promote the EDC 

activation. Reaction components were slowly magnetically stirred and reaction was 

let to proceed for 15 minutes at room temperature, so the carboxylic groups of 

cetuximab were activated for further conjugation (Support, 2012-2013). 

For the second part of this procedure the amine reaction took place. Despite the 

recommendation from Thermo Scientific technical support to increase the reaction pH 

above 7,0 (using concentrated PBS or other non-amine buffer such as sodium 

bicarbonate) -  this step was not performed due to the fact that chitosan is only 

soluble and stable at acidic pH. Thus chitosan solution was introduced to the reaction 

in the tested ratios of 1:1, 1:25, 1:50 and 1:100mol (cetuximab to chitosan molar 

ratios). The solution was well mixed and allowed to react while gently magnetic 

stirred for 24 or 48h hours at room temperature for a batch of ratios, and for the same 

24 or 48h for a couple more batch of ratios produced at 4ºC (Lee et al., 2012, Gaspar 

et al., 2013, Support, 2012-2013). As a final step and in order to quench the reaction, 

the final product was immediately ultra-filtered  recurring to disposable concentrators 

with a 150K MWCO membrane, capable of retaining a predicted conjugated 

molecule of 195K MWCO. This procedure provided a fast sample processing, high 

retentate recovery and high concentration factors (> 90 fold) even with low expected 

concentrations. 

After ultra-filtering the produced compound, the retained concentration product was 

collected and an aliquot freeze-dried for 48h. 

During the previously mentioned conjugation procedure the pH was maintained 

approximately at 5,0, which was measured using a CRISON’s pH meter GLP21. 
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6. Cellulose acetate electrophoresis 

On a first approach we recurred to this methodology to identify conjugate 

formation. 

The process consists on the separation of proteins recurring to their different 

molecular weight and isoelectric point. As the produced conjugates were expected to 

have a molecular weight (MW) of approximately 195000g/mol - far superior from 

cetuximab’s MW of 145000g/mol and LMWChi’s MW of 50000g/mol – samples of the 

produced conjugates, cetuximab, LMWChi and physical mixture of the last two 

compounds (without activation by EDC/NHS), should present different migration 

patterns according to their MW and isoelectric point (IEP) in cellulose acetate stripes 

after exposition to electrical current.  

 

 

6.1. Cellulose acetate electrophoresis protocol 

First, Cellulose acetate strips were immersed in tampon (tris-hipurate pH=8,8) 

for 15minutes at room temperature. After this the strips were put to contact with 

absorbent paper to remove excess tampon, and stretched in the mechanism’s 

support with their extremities immersed in the tampon. With an appropriated 

micropipette 15µL per sample were applied with low pressure to the strips for 

1minute.  

A 5mA current per strip was used in the system for 1 hour (Erro! A origem da 

referência não foi encontrada.). To reveal the migration patterns strips were 

immersed in Coomassie dye (0,5% m/V Coomassie blue G250, 45% methanol, 10% 

glacial acetic acid, 45% distilled water) for 5minutes (Erro! A origem da referência 

não foi encontrada.). Then discoloration was proceeded with bleaching compound I 

(50% Methanol, 10% Glacial Acetic Acid, 40% distilled H2O) for 1hour and bleaching 

compound II (5% Methanol, 7% Glacial Acetic Acid, 88% distilled H2O) overnight. 

Cellulose acetate strips were then fixed with pure methanol, and put in a sterilizer at 

37ºC for 10minutes. After this strips were immersed in a transparency solution (90% 

methanol, 10% glacial acetic acid) for 3 to 4 minutes. Strips were then drained from 

excess liquid with absorbent paper and stuck to microscope slides. Finally 
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microscope slides, with the cellulose acetate stripes attached, were put in the 

sterilizer at 80ºC for approximately 5minutes until the strips got transparent. 

 

 

 

7. Freeze-drying 

After each conjugation a 5mL sample of each conjugate was freeze at -80ºC, 

after which freeze-drying was executed recurring to a 4K freeze-dryer from Edwards 

(Crawley, West Sussex, U.K.) for 48H.   

 

 

 

8. FTIR analyses 

Fourier transform infrared spectroscopy (FTIR) is a technique used to obtain an 

infrared spectrum of absorption, emission, photoconductivity or Raman scattering of 

a solid, liquid or gas. An FTIR spectrometer simultaneously collects spectral data in a 

wide spectral range advantage that, in conjugation with the sensitivity of the this 

method, and due to the fact that a minimal concentration of conjugate could have 

been produced, made this the identification method of choice to detect the conjugate 

presence. 

Rather than shining a monochromatic beam of light at the sample, with this technique 

a beam containing many frequencies of light at once is produced (Multiplex or Felgett 

advantage), after which how much of that beam is absorbed by the sample is 

measured. This beam is then modified to contain a different combination of 

frequencies, giving a second data point. The process is repeated continuously and 

afterwards, a computer program uses all these data and works backwards to infer the 

absorption at each wavelength.  

The previously described beam is generated by starting with a broadband light 

source—one containing the full spectrum of wavelengths to be measured. The light 

shines into a Michelson interferometer (a certain configuration of mirrors), one of 

which is moved by a motor. As this mirror moves, each wavelength of light in the 

beam is periodically blocked, transmitted, blocked, transmitted, by the interferometer, 
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due to wave interference. Different wavelengths are modulated at different rates, so 

that at each moment, the beam coming out of the interferometer has a different 

spectrum. 

Computer processing is crucial to turn the raw data (light absorption for each mirror 

position) into the desired result (light absorption for each wavelength). The 

processing required turns out to be a common algorithm called the Fourier transform, 

and so the name FTIR.(Griffiths, 2007) 

In this project an ABB MB3000 FTIR Laboratory Spectrometer equipped with an ATR 

was used throughout the analysis. For process and analyses of the data collected, 

the Horizon MBTM FTIR software was elected.(ABB.pt, 2014). 

 

 

 

9. Protein quantification – Bradford method 

As a protein quantification method to help determine the amount of conjugated 

and unconjugated cetuximab after filtration with Pierce’s Protein Concentrators, 150K 

MWCO, the Bradford method was elected as it’s simple, rapid, readily automated, 

relatively reliable, available and didn’t interfere with any of the compounds in solution 

(CTB, 2005). 

This method is based on the observation that the absorbance maximum for an acidic 

solution of Coomassie Brilliant Blue G-250 shifts from 465 nm to 595 nm when 

binding to the amine groups of proteins (particularly in the lysine aminoacids (aas) 

occurs. Both hydrophobic and ionic interactions stabilize the anionic form of the dye, 

causing a visible color change (Bradford, 1976, CTB, 2005).  

The main disadvantage and thus limitation of this method relies on the it’s high 

dependency on protein’s quality and composition, since it’s more sensible to amine 

groups in lysine aas (Sapan et al., 1999, Okutucu et al., 2007). 

Protein measurements in the final products were made using a Bradford assay kit 

(Bio Rad Protein Assay; Bio Rad Laboratories). 
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9.1. Bradford method protocol 

The Bradford reagent is prepared dissolving 100 mg Coomassie Brilliant Blue 

G-250 in 50 ml 95% ethanol, added 100 ml 85% (w/v) phosphoric acid. Diluted to 1 

liter when the dye is completely dissolved, then it is filtered through Whatman#1 

paper before use. In the present work, the Bio-Rad® concentrate (Bradford reagent) 

was used as it was available and it’s more sensible than the lab made reagent. 

First a standard curve of absorbance was determined. Briefly, standards of 

0,01mg/mL to 2mg/mL were prepared from a concentrated 5,0mg/dL cetuximab 

solution diluting volumes of this solution in LMWChi filtrate so that the noise due to 

the later could be eliminated when running the samples. Then to individual falcons 

containing 5mL of Bradford reagent, 100µL of each of the referred previous 

standards were added, and vortex. These were left to incubate at room temperature 

for 5min, and immediately, after new vortex, 100µL of the solutions were transferred 

to a 96 well plate as displayed below.  
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Plate A – CTX standards 

 

 

 

 

 

 

 

 

Figure 1 - Schematic representation of the experime ntal design of a 96-well plate for 
absorbance reading of CTX standards, through the Br adford method. 

 

P0 Distilled water P4 CTX(0,1mg/mL) + Coomassie reagent 

A Distilled water + Coomassie reagent P5 CTX(0,2mg/mL) + Coomassie reagent 

B CTX(5mg/mL) + Coomassie reagent P6 CTX(0,5mg/mL) + Coomassie reagent 

P1 CTX(0,01mg/mL) + Coomassie reagent P7 CTX(1mg/mL) + Coomassie reagent 

P2 CTX(0,02mg/mL) + Coomassie reagent P8 CTX(1,5mg/mL) + Coomassie reagent 

P3 CTX(0,05mg/mL) + Coomassie reagent P9 CTX(2mg/mL) + Coomassie reagent 

Table 1 – Bradford method: Plate A, disposition of cetuximab standards 

 

Standards for LMWChi were created and read since that free LMWChi was 

presented in the “filtered” samples (post-ultra-filtered products that passes the 150K 

MWCO membrane), but also LMWChi could be found conjugated to CTX. Thus 

LMWChi would present itself as noise in the detection and quantification of the 

successfully produced conjugate. The same procedure previously described was 

applied to this plate.  

  

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 A B 
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A schematic representation of the 96 well plate with the LMWChi standards is 

presented below. 

 

Plate B – LMWChi standards 

 

 

 

 

 

 

 

 

Figure 2 - Schematic representation of the experime ntal design of a 96-well plate for 
absorbance reading of LMWChi standards, through the  Bradford method. 

 

P0 LMWChi (5mg/mL) + Coomassie reagent P4 LMWChi (0,1mg/mL) + Coomassie reagent 

A Distilled water + Coomassie reagent P5 LMWChi (0,2mg/mL) + Coomassie reagent 

B LMWChi (5mg/mL) + Coomassie reagent P6 LMWChi (0,5mg/mL) + Coomassie reagent 

P1 LMWChi (0,01mg/mL) + Coomassie reagent P7 LMWChi (1mg/mL) + Coomassie reagent 

P2 LMWChi (0,02mg/mL) + Coomassie reagent P8 LMWChi (1,5mg/mL) + Coomassie reagent 

P3 LMWChi (0,05mg/mL) + Coomassie reagent P9 LMWChi (2mg/mL) + Coomassie reagent 

Table 2 - Bradford method: Plate B, disposition of LMWChi Standards 

  

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 A B 



  Materials and methods  

  47 

A 

B

C

D

E

F

G

H

 

For the samples in which was needed protein (cetuximab) quantification, the same 

procedure was taken, and a schematic representation of the plates and samples 

disposition can also be seen below. 

 

Plate C – Samples 

 

 

 

 

 

 

 

 

 

Figure 3 - Schematic representation of the experime ntal design of a 96-well plate for protein 
quantification of samples, through the Bradford met hod. 

 

C1 Sample: Concentrate 1:1 + Coomassie reagent F1 Sample: Filtrate 1:1 + Coomassie reagent 

C2 Sample: Concentrate 1:25 + Coomassie 
reagent 

F2 Sample: Filtrate 1:25 + Coomassie 
reagent 

C3 Sample: Concentrate 1:50 + Coomassie 
reagent 

F3 Sample Filtrate: 1:50 + Coomassie 
reagent 

C4 Sample: Concentrate 1:100 + Coomassie 
reagent 

F4 Sample Filtrate: 1:100 + Coomassie 
reagent 

C5 Sample: Concentrate 1:200 + Coomassie 
reagent 

F5 Sample Filtrate: 1:200 + Coomassie 
reagent 

Table 3 - Bradford method: Plate C, disposition of «concentrate» and «filtrate» samples in test 

 

Finally, after transferring 100µL of each of the compounds to their respective 

and previously represented wells, the reading took place in a Biotek Synergy 2 plate 

reader. Briefly: the device was previously warmed up before use to room 

temperature, plates were programmed to be gently shacked for 1min., and 

absorbance was read at 595 nm. 

Data was analyzed using GraphPad Prism® version 6.0c. 

 

 

 

 

C1 C4 C5 F1 F2 F3 F4 F5 C2 C3 
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10. Size characterization - Dynamic light scatterin g 

Dynamic light scattering (DLS), sometimes referred to as Quasi-Elastic Light 

Scattering (QELS), is nowadays used on a routine basis for the analysis of particle 

sizes in the sub-micrometer range. As a non-invasive, well-established technique for 

measuring the size and size distribution of molecules and particles typically in the 

submicron region, and with the latest technology lower than 1nm, It provides an 

estimation of the average size and its distribution within a measuring time of a few 

minutes. 

Sub-micron particles suspended in a liquid are in constant motion as a result of the 

impacts from the molecules of the suspending liquid. This movement is known as 

Brownian Molecular Movement and was correctly suggested by W. Ramsay in 1876 

and confirmed by A. Einstein and M. Smoluchowski in 1905/06. 

In the Stokes-Einstein theory of Brownian motion, the particle motion at very low 

concentrations is depending on the viscosity of the suspending liquid, the 

temperature, and the size of the particle (Russel, 1981). If viscosity and temperature 

are known, the particle size can be evaluated from a measurement of the particle 

motion. At low concentrations, this is the hydrodynamic diameter. 

DLS probes this motion optically. The particles are illuminated by a coherent light 

source, typically a laser, creating a diffraction pattern, a fine structure from the 

diffraction between the particles, i.e. its near-order. As the particles are moving from 

impacts of the thermal movement of the molecules of the medium, the particle 

positions change with the time, (t). The change of the position of the particles affects 

the phases and thus the fine structure of the diffraction pattern. So the intensity in a 

certain point of the diffraction pattern fluctuates with time. The fluctuations can be 

analyzed in the time domain by a correlation function analysis or in the frequency 

domain by frequency analysis. Both methods are linked by Fourier transformation. 

The measured decays rate G are related to the translational diffusion coefficients D 

of spherical particles by 

 

with 
 

and 
 

 

were q is the modulus of the scattering vector, kB is the Boltzmann constant, T the 

absolute temperature, and h the hydrodynamic viscosity of the dispersing liquid. The 
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particle size x is then calculated by the Stokes-Einstein equation from D at fixed 

temperature T and h known. 

DLS covers a broad range of diluted and concentrated suspension. As the theory is 

only valid for light being scattered once, any contribution of multiple scattered light 

leads to erroneous PCS results and misinterpretations. With this said different 

measures have been taken to minimize the influence of multiple scattering.  

DLS measurements were performed using a Malvern zetasizer Nanoseries nano-ZS. 

Conjugates were characterized in terms of average size, polydispersity index (PDI), 

and zeta potential.  

 

 

 

11. Cell culture 

 

 

11.1. Cell lines 

This project used two different immortalized human cell lines, as both were 

already available as well as the fact that both are adenocarcinomic cell lines from the 

respiratory tract where it’s pretended that a future compound as pharmacologic 

action.  

 

 

11.1.1. A549 

 These adenocarcinomic human alveolar basal epithelial cells were first 

developed in 1972 by D. J. Giard, et al. through the removal and culturing of 

cancerous lung tissue in the explanted. Morphologically they are squamous and 

physiologically are responsible for the diffusion of some substances, such as water 

and electrolytes across the alveoli of lungs. If cultured in vitro, A549 cells grow as 

monolayer cells, adherent or attaching to the culture flask. A549 cell line are widely 

used as an in vitro model for a type II pulmonary epithelial cell model for drug 

metabolism and as a transfection host.(ATCC.org, 2014a, a549.com)  
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11.1.2. Calu3 

 Lung adenocarcinoma; derived from metastatic site by pleural effusion 

epithelial cells, Calu3 is a non-small-cell lung cancer cell line that grows in adherent 

culture and displays epithelial morphology. This cell line was established in 1975 

from a 25-year-old Caucasian male with adenocarcinoma of the lung (ATCC.org, 

2014b). 

These cells have constitutively active ErbB2/Her2 due to amplification of the ERBB2 

gene. They express wildtype EGFR and mutant K-Ras (G13D). In addition, they 

harbor mutations in TP53 and CDKN2A genes. The Calu3 cells are sensitive to 

erlotinib (EGFR tyrosine kinase inhibitor) and cetuximab. These cells are also 

capable of forming tumors in immunocompromised mice (ATCC.org, 2014b). 

Being this cell line a suitable model not only to examine the transport of low 

molecular weight substances and xenobiotics, as for studying the contributions of 

bronchial epithelial cells to mechanisms of drug delivery at the respiratory epithelium, 

it was a natural choice to test the produced conjugates on (Foster et al., 2000). 

 

 

 

12. Cell culture conditions 

Both cell lines were cultured in complete growth medium consisting of 

Dulbecco’s Modified Eagle’s Medium (D-MEM, PAA – The Cell Culture Company), 

supplemented with 5% (v/v) Foetal Bovine Serum (FBS, Gibco). All cell lines were 

grown in monolayer cultures in adequate flasks and kept permanently in exponential 

growth in a humidified incubator (ESCO Celculture CO2 Incubator – CCL-170B-8 

170L), at 37ºC and a 5% CO2 atmosphere. Cells were trypsinized and subcultured 

mostly every three to four days, in order to avoid confluence and ensure their healthy 

exponential growth. 

All procedures involved in cell culture were performed in a ESCO Class II BSC 

laminar flux biological safety cabinet, biosafety level II, with aseptic techniques being 

always regarded. 
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13. Cell subculture 

Cells were mainly maintained in 25cm3, in some occasions also in 75cm3 

flasks, and regularly observed under microscopy (Zeiss Primo Vert) to check for the 

confluence and to assure they looked healthy and free of contamination to use in the 

experiments. At approximately 70-80% confluence, they were subcultured to new 

flasks, according to the following procedure. 

For 25cm3 flasks, growth medium was discarded and the cells were washed 

with 2ml of sterile Phosphate-Buffered Saline (PBS, pH≈ 7.4: 137mM NaCl; 2.7mM 

KCl; 6.4mM K2HPO4; 1mM NaHPO4) in order to remove trypsin inhibitors. To 

promote cell detachment, 500µL of Trypsin EDTA 1× (ScienCell) were added and 

allowed to act for 5 to 10 minutes at 37.0 °C. Cell  detachment was then confirmed 

through microscopic observation. 4.5ml of complete growth medium were added to 

stop the reaction. At this point, two different approaches were performed, in 

accordance to the final purpose of the cell suspension (experimental assays or cell 

culture maintenance). 

When cells were intended to be seeded at a determined density for 

experimental assays, they were counted through the trypan blue exclusion method. 

In such cases, a 30µL aliquot of the cell suspension was collected. 30 µl of trypan 

blue were then added to this aliquot and the suspension was homogenized. Aliquots 

of 15 µl were then transferred to a Neubauer counting chamber. After this cells were 

counted using the trypan blue exclusion method and cell density (number of cells per 

ml) was determined. Finally, an equivalent volume to the intended density of cells 

(according to each experiment) was transferred to an adequate final volume of fresh 

growth medium. 

Whenever the purpose was to maintain cell culture stocks, cells were split and 

diluted. Cell splits were based on the percentage of cells taken from the trypsinized 

flask and put into a new flask. In general, according to the amount of cells recovered 

from the trypsinized flask, 10% splits were performed. To perform a 10% split (1:10) 

to a new T25 flask, 500 µL of cell suspension were transferred into a new flask 

containing 4.5 ml of growth medium. 

 

 



Materials and methods 

52 

 

14. Cell defrosting 

Cryovials containing cells were removed from the freezer and left to warm to 

room temperature. When already in the liquid state, cells were then transferred to 

pre-warmed growth medium and centrifuged at 1,000 rpm for 5 minutes so the 

supernatant could be discarded due to DMSO toxicity. After which cells were 

transferred to growth medium supplemented with 10% (v/v) FBS for both cell lines. 

 

 

 

15. Cytotoxicity assays 

 

 

15.1. MTT assays 

This toxicity testing, for cell viability and metabolism, is done in some ways 

which are by measuring the number of cells and their development after being 

exposed with the tested materials, by examining cell status after the changing of 

membrane permeability, and by measuring toxic response based on enzymatic 

activities. Nevertheless, toxicity testing based on enzymatic cell activities is often 

done since this method can monitor specific function of cell metabolism, it needs only 

short duration (4 hours), gives quantitative results, has high sensitivity towards toxic 

materials, and has potentials for standardization of testing method. 

MTT is a yellow soluble molecule, which can be used to analyze cellular enzymatic 

activities. If the cell can reduce MTT, the formazan produced will be blue-purple, 

insoluble, and will precipitate in cell. The amount of formazan formed is proportional 

to enzymatic activities. This testing, furthermore, is measuring cellular 

dehydrogenizing activities, and changing the chemical material, MTT, through the 

number of cellular reductive materials into blue and insoluble formazan compound. 

MTT assay actually is based on the capability of living cells in reducing MTT salt. The 

principals of this assay are to break tetrazolium MTT ring (3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl tetrazolium bromide) by the existence of dehydrogenase in active 

mitochondria, and then to produce insoluble blue-purple formazan product. The 



  Materials and methods  

  53 

mechanism is that the yellow tetrazolium salt will be reduced in cell which has 

metabolic activities. Mitochondria of living cell has important role in producing 

dehydrogenase. If the dehydrogenase is not active because of cytotoxic effects, 

formazan will not be produced. Formazan production can be measured by diluting it 

and measuring the optic density of the solution produced. There are actually many 

protocols in using MTT assay, but the concentration of MTT used must be the same 

as to dilute 5mg/ml yellow MTT powder in PBS. The reaction of blue-purple color is 

used as the measurement of the number of living cells. The number of living cells can 

be measured as the product result of MTT by using spectrophotometer with 570–690 

nm wave length. (Maretaningtias Dwi Ariani, 2009) 

This metabolic/toxicity assay was used to quantitate cell proliferation and cytotoxicity 

after exposure to different produced conjugates,   

Cells were trypsinized and counted according to the procedure described previously 

in the “Cell culture” section. After plating cells in ideal densities (previously 

determined by plotting calibration curves), in 96-well plates, and allowed to stabilize 

and adhere for 24 hours. Cell suspensions with a final density of 9 x 104 cells/ml were 

prepared, for both cell lines, in appropriate growth medium containing 5% FBS and 

without antibiotic/antimitotic mixture. A volume of 100 µl cells were plated per well. 

Following dilution, the compounds under analysis were then added, according to the 

schematic representations below. 

Following 24 or 48 hours of exposure to the compound at 37ºC and 5% CO2 (in a 

ESCO Celculture CO2 incubator CCL-170B-8 170L) 20 µl of a 5 mg/ml MTT ((3-(4, 5-

dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) solution in PBS were added to 

each well and incubated for 4 additional hours in the same conditions. Formazan 

crystals were then solubilized by adding 100 µl of solubilization solution (89% (v/v) 

isopropanol, 10% (v/v) triton X-100, 0,37% (w/v) HCl). Upon homogenization, 

absorbance values were read at 550 nm in a plate reader (Biotek Synergy 2) and 

retrieved using Gene5 software (Biotek). Data was analyzed using GraphPad Prism® 

version 6.0c. 
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Below are schematic representations of the MTT plates. 

 

Plates A, A1, C and C1: 

A – A549 Cell line – 24H exposure to compounds 

A1 – A549 Cell line – 48H exposure to compounds 

C – Calu3 Cell line – 24H exposure to compounds 

C1 – Calu3 Cell line – 48H exposure to compounds 

 

 

 

Figure 4 - Schematic representation of the experime ntal design of a 96-well plate for 
absorbance reading of MTT exposed cells after conta ct with compounds in test for 24H. 

 

C- Negative control X5 Conjugate 1:25 (75µg/mL) 
C+ Positive control X6 Conjugate 1:25 (25µg/mL) 
X1 Conjugate 1:1 (200µg/mL) X7 Conjugate 1:50 (200µg/mL) 
X2 Conjugate 1:1 (75µg/mL) X8 Conjugate 1:50 (75µg/mL) 
X3 Conjugate 1:1 (25µg/mL) X9 Conjugate 1:50 (25µg/mL) 
X4 Conjugate 1:25 (200µg/mL) X10 --- 
Table 4 - MTT: Plate A, A1, C and C1 disposition of  controls and compounds in test 
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C- X2 X3 X4 X5 X6 X7 X8 X9 X10 C+ X1 
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Plates B, B1, D and D1: 

B – A549 Cell line – 24H exposure to compounds 

B1 – A549 Cell line – 48H exposure to compounds  

D – Calu3 Cell line – 24H exposure to compounds 

D1 – Calu3 Cell line – 48H exposure to compounds 

 

 

 
Figure 5 - Schematic representation of the experime ntal design of a 96-well plate for 

absorbance reading of MTT exposed cells after conta ct with compounds in test for 24H. 

 

C- Negative control X5 Conjugate 1:200 (75µg/mL) 

C+ Positive control X6 Conjugate 1:200 (25µg/mL) 

X1 Conjugate 1:100 (200µg/mL) X7 Physical mixture: CTX+LMWChi (200µg/mL) 

X2 Conjugate 1:100 (75µg/mL) X8 Physical mixture: CTX+LMWChi (75µg/mL) 

X3 Conjugate 1:100 (25µg/mL) X9 Physical mixture: CTX+LMWChi (25µg/mL) 

X4 Conjugate 1:200 (200µg/mL) X10 --- 

Table 5 - MTT: Plate B, B1, D and D1 disposition of  controls and compounds in test 

 

 

 

 

15.2 LDH assays 

LDH assays can be performed by assessing LDH released into the media as a 

marker of dead cells or performing lysis LDH as a marker of remaining live cells. 

Unlike many other cytoplasmic enzymes which exist in many cells either in low 

amount (e.g., alkaline and acid phosphatase) or unstable, LDH is a stable 
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C- X2 X3 X4 X5 X6 X7 X8 X9 X10 C+ X1 
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cytoplasmic enzyme present in all cells and rapidly released into the cell culture 

supernatant upon damage of the plasma membrane. 

Lactate dehydrogenase (LDH) is an oxidoreductase present in a wide variety 

of organisms. LDH catalyzes the interconversion of pyruvate and lactate, with the 

concomitant interconversion of NADH and NAD. When disease, injury or toxins 

damage tissues, cells release LDH into the bloodstream. Being a fairly stable 

enzyme, LDH has been widely used to evaluate the presence of damage and toxicity 

of tissue and cells. Quantification of LDH has broad range of applications. In this 

colorimetric LDH quantification assay, LDH reduces NAD to NADH, which then 

interacts with a specific probe to produce a color (λmax = 450 nm). This assay is 

quick, convenient, and sensitive (Sigma-Aldrich, 2014b, Halprin and Ohkawara, 

1966).  

To save time and reagents the LDH assays took place at the same time as the MTT. 

Since the LDH is performed taking in consideration the release of LDH to the 

extracellular medium after cell exposure to the compounds in test, after the 

previously described procedure in the «MTT assay» section until the 24 or 48H of 

exposure step, 100µL of each well was transferred to new 96-well plates. In the first 

plates (where MTT assays took place) 100µL of cell culture medium was added so 

the MTT could proceed, while in the new plates the LDH assay proceeded as 

described next. With this said the LDH 96-well plates took the same disposition as 

the MTT plates.  

Briefly at time of use the lactate dehydrogenase assay mixture was prepared by 

mixing equal volumes of LDH assay substrate solution, LDH assay dye solution, and 

LDH assay cofactor preparation, as the manufacturer protocol (Sigma-Aldrich, 

2014a). As the LDH plates already had 100µL of extracellular medium exposed to the 

compounds, 100µL of the lactate dehydrogenase assay mixture were added to each 

well in a volume equal to twice 

the volume of medium removed for testing (200 µL). Plates were covered with 

opaque aluminum foil to protect from light, and left to incubate at room temperature 

for 30 minutes. At this point the reaction was terminated by the addition of 20µL of 1N 

HCl to each well. Finally spectrophotometrically measure of absorbance at a 

wavelength of 490nm took place in a multiwell plate reader. Background absorbance 

of the multiwell plates was read at 690nm since this value had to be subtracted from 
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the primary wavelength measurement (490 nm) (Sigma-Aldrich, 2014a). Data was 

analyzed using GraphPad Prism® version 6.0c. 

 

 

 

16. Statistical analysis 

Results for MTT, LDH and DLS (physical characterization of the conjugates) were 

expressed as the mean ± SD and statistical significance was tested by one-way-

ANOVA with a Tukey’s multiple comparison post hoc test comparing formulations 

results to control, where P-values below 0.05 were considered statistically significant, 

in GraphPad Prism® version 6.0c. 

Bradford method assays results were expressed by means ± SD of at least three 

experiments and statistical significance was tested by paired t-test, where P-values 

below 0.05 were considered statistically significant, in GraphPad Prism® version 6.0c. 
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Results and discussion 
 

Synthesis of cetuximab modified chitosan is outlined in Fig. 8 . Here, the carboxylic 

group of modified cetuximab is reacted with the NH2 group of chitosan in the 

presence of the chosen linker carbodiimide linker EDC and its coadjutant NHS. 

Regarding the temperature and time of main reaction at which conjugates synthesis 

was conducted, as previously mentioned, a combination of two different approaches 

were taken in consideration: ≈4ºC and room temperature (RT) for 24 and 48H (Lee et 

al., 2012, Gaspar et al., 2013, Support, 2012-2013). 

 

 

 

1. Cellulose acetate electrophoresis 

 

It was expected a clear difference in microscope slides containing cellulose acetate 

strips with the results after the electrophoresis protocol, showing a much heavier 

product than cetuximab, LMWChi or the physical mixture of both of them without the 

linker action. 

 

 
Fig. 9  Figure depicting one of the obtained produc ts from a cellulose acetate electrophoresis 
assay, showing three strips where samples of: buffe r, physical mixture (CTX+LMWChi), 
conjugate 1:25, conjugate 1:100, CTX and LMWChi, ru n being separated by molecular weight.  
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Despite the expected, the obtained results, assay after assay, show no 

difference between physical mixture of cetuximab with chitosan (2nd product from 

left), and the several produced conjugates using the same molecular ratios (in the 

above figure can be seen conjugates 1:25 and 1:100, although all the other 

conjugates presented similar results). Thus not indicating that a conjugate wasn’t 

produced but not confirming it either.  

As results show cellulose acetate electrophoresis is not a reliable conjugate 

confirmation method in this case. Probably due to conjugates, LMWChi and other 

compounds sensibility to pH, or even their inadequate separation by the cellulose 

acetate membrane due to cetuximab as well as conjugates high molecular weight.  

 

 

 

2. Chemical analysis interaction  

 

 

2.1. FTIR analysis 

FTIR spectral analysis was used to study the chemical modifications occurring 

in the conjugation procedure between cetuximab (CTX) and low molecular weight 

chitosan (LMWChi). In the below FTIR spectra, typical peaks were identified around 

1633 cm−1 which corresponds to the N-H bending vibration band of CTX, through the 

presence of amide and amide bands (arrow 1500-1690cm−1 range) (Amoozgar et 

al., 2012). It was also identified a rudimentary peak at around 1734 cm−1 due to 

carbonyl stretching of C-N (typical C-N aliphatic stretch: 1025-1250 cm−1). 

Specially for the 1:1, 1:25 and 1:50 conjugate’s spectrums, a peak was observed 

near 1633 cm−1 confirming the formation of amide bond between LMWChi and CTX 

(Anitha et al., 2009, Anitha et al., 2011, Deepagan et al., 2012). 

Despite these results do not provide the ultimate evidence for the formation of the 

conjugate they add prove to the presence of Cetuximab in the final product, and so 

indirectly pointed out for a successful conjugation. As the Thermo Scientific Pierce 

Concentrators, with a specifically membrane pore of 150K MWCO, have been used 

as disposable ultrafiltration centrifugal devices for concentration and diafiltration of 

our conjugation residues: free CTX≈145K MW, free LMWChi≈50K to 37500 MW , 
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free EDC≈191,70 MW and free NHS≈115,09 MW – these are non-reacted 

compounds with a lower MW than that of the membrane pore, - it can almost be 

assured that the non diafiltered compound as having a MW of 150K+, so a conjugate 

of the initial compounds. Even though, the presence of cetuximab and conjugation 

efficiency of CTX, should be confirmed via BCA assay or other protein analysis 

techniques like the Bradford method.(Maya et al., 2013) 

Concerning synthesis temperature, it doesn’t appear to have that much of an impact 

in the final product. With the same protocol except for synthesis temperature, a first 

synthesis was carried at 4ºC (Lee et al., 2012) (Fig. 10  and Fig. 11 ) to make sure the 

stability of cetuximab was maintained and there weren’t significant changes to FTIR 

signal compared to the conjugates produced at room temperature (RT) (Fig. 12  and 

Fig. 13 ).     

Furthermore, a deeper analysis of the FTIR spectrum shows that ratios of 1:200 mol 

and 1:100 mol (CTX:LMWChi) seem to be unfavorable to conjugation procedure 

(Fig. 10  and Fig. 11 ), probably due to the presence of multiple free amine groups in 

LMWChi, which might be conditioning the reaction, or probably masking the FTIR 

analysis. 
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2.1.1. Synthesis of conjugates at 4ºC 

 
Fig. 10 – Conjugates 1:1, 1:25, 1:50, 1:100, 1:200,  synthetized at 4ºC FTIR spectrum, compared 

to the ones of mixtures of CTX+LMWChi without react ion.  

 
Fig. 11 - Conjugates 1:1, 1:25, 1:50, 1:100, and 1: 200 synthetized at 4ºC FTIR spectrum, 

compared to the ones of mixtures of CTX+LMWChi with out reaction. 
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2.1.2. Synthesis of conjugates at RT 

 
Fig. 12 - Conjugates 1:1, 1:25, 1:50, and 1:100, sy nthetized at ≈22ºC (RT) FTIR spectrum, 
compared to the ones of CTX, LMWChi and mixtures of  CTX+LMWChi without reaction. 

 
Fig. 13 - Conjugates 1:1, 1:25, 1:50, 1:100, synthe tized at RT, FTIR spectrum, compared to the 

ones of CTX, LMWChi and mixtures of CTX+LMWChi with out reaction  
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Clearly, and despite the literature (Lee et al., 2012), conjugation reaction taken 

at 4ºC was contra-productive when comparing results with the synthesis at room 

temperature, since the results obtained through the FTIR analyses show a weaker 

signal - Fig. 10 to Fig. 13 .  

 

 

 

3. Protein quantification  

 

 

3.1. Bradford method 

The results obtained on protein quantification through the Bradford method 

seem to support the FTIR results indicating a higher percentage of protein 

concentration relatively to the initial cetuximab concentration used to synthetize the 

conjugate, in the final product in contrast to the filtered compounds remains. 

At this point after the ultrafiltration process recurring to the disposable 150K MW 

filters, we would either have cetuximab in membrane retained «conjugate» or its 

corresponding, and membrane trespassed, «filtrate». What can be seen in the 

graphic represented on Fig. 14 is the final cetuximab concentration (mg/mL) in 

relation to the initial used concentration for each conjugation process.  
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Fig. 14 - Relationship of final [CTX] with the init ial concentration, for ultrafiltration products: 

retained conjugates in the filter's membrane, and f iltered products that crossed the membrane. 

Results are means ± SD from at least three independent assays. Statistical significance was accessed 
by paired t-test. * Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** indicates p ≤ 0.001; **** Indicates p  ≤ 
0.0001. 

 

Clearly there is a significative difference between pre-membrane (conjugates) 

products and post-membrane (filtrates) product, conjugates with a cetuximab 

chitosan molecular ratio of 1:1, 1:25, and 1:50, presented a higher protein 

concentration, being this protein the used antibody cetuximab. This supports data 

from FTIR where as previously mentioned conjugates 1:25 and 1:50 seem to be 

closer to what was expected, a successful cetuximab-chitosan conjugate. 

Despite some possible weak interference from LMWChi, presented the same 

conditions is reasonable to say, at very least, that a molecular proportion of CTX to 

LMWChi of 1 to 1; 1 to 25 and 1 to 50 seems to produce the most viable conjugates 

than the rest of tested ratios.  

Even though the results obtained, a more sensitive assay for protein 

quantification should be used to validate and confirm the presented results. 

Conjugation efficiency of CTX with LMWChi could be confirmed recurring to a BCA 

assay (Deepagan et al., 2012), though Bradford method for protein quantification was 

elected due to economic and availability reasons. 
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4. Size characterization by Dynamic Light Scatterin g  

 

Despite the positive results obtained in the other techniques, all the samples 

from conjugate 1:25 were flocculated when submitted to DLS analyses, meaning that 

a non-viable compound was formed and unable to be measured. 

With this said results obtained are displayed in the table below, where is presented 

the mean and SD of three samples for each compound. 

 

 

Compound   Z-average  
(nm) Pdi Zeta Potential 

(mV) 

LMWChi Mean 539±71 0.66±0.12 77.9±3.6 

Conjugate 1:1 Mean 1156±216 0.96±0.07 33.2±2.0 

Conjugate 1:50 Mean 270±49 0.76±0.07 82.5±4.6 

Conjugate 
1:100 Mean 414±82 0.89±0.07 98.8±6.1 

Conjugate 
1:200 Mean 484±60 0.90±0.07 102.7±4.0 

Table 6 - Physical-chemical properties of prepared LMWChi and developed conjugates 
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Fig. 15 - Zeta Potential (mV) statistical analysis for Conjugates 1:1, 1:50, 1:100 and 1:200, 

comparing to LMWChi as control. 

Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by One 
Way ANOVA with a Tukey’s multiple comparison post hoc test comparing conjugates results to 
LMWChi. 

 

 
Fig. 16 - Polidispersibility index (Pdi) statistica l analysis for Conjugates 1:1, 1:50, 1:100 and 

1:200, comparing to LMWChi as control. 

Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by One 
Way ANOVA with a Tukey’s multiple comparison post hoc test comparing conjugates results to 
LMWChi. 
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When it comes to Pdi, values greater than 0.7 indicate that the sample has a 

very broad size distribution, which indicates us that none of the analyzed conjugates 

was a homogeneous solution. 

The Z-average size increases as the particle size increases, therefore it 

provides a reliable measure of the average size of a particle size distribution.  

Looking to results above, Z-average values seem to be inconsistent, and actually in 

some samples unexpectedly high. However, these results are not totally consistent 

with data resulting from the FTIR, this might have something to do with the samples 

stability over time since some samples were prepared weeks before DLS 

measurements thus resulting in these values. Also that can be attested by samples 

Zeta Potential since the same samples with a high Z-average have a low Zeta 

Potential, which probably has to do with their stability over time. Still, samples from 

conjugate 1:50 seem to present stability as their average Zeta Potential > 60 (mV). 
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5. Evaluation of compounds cytotoxicity 

 

 

5.1. MTT assays 

As previously described in «Materials and Methods» cells were exposed to cycles of 

24H and 48H to the different compounds/chemicals used in the conjugation reaction, 

in order to evaluate conjugates cytotoxicity as well as all other compounds, and then 

MTT and LDH assays were performed. 

Metabolic activity/cell viability was expressed in percentual terms, as a fraction of the 

initial amount of cells (set as 100%). 

 

5.1.1. MTT – 24H Exposure – A549 

 

  

Fig. 17 – MTT assays - % Cell Viability (% of control) for 24H Exposure to  several conjugates 
and their predecessors, on A549 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed 
by One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. 
* Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; **** Indicates p  ≤ 0.0001 
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5.1.2. MTT – 24H Exposure – Calu3 

 
Fig. 18 – MTT assays - % Cell Viability (% of contr ol) for 24H Exposure to several conjugates 

and their predecessors, on Calu3 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. * 
Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; **** Indicates p  ≤ 0.0001. 
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5.1.3. MTT – 48H Exposure – A549 

 
Fig. 19 – MTT assays - % Cell Viability (% of contr ol) for 48H Exposure to several conjugates 

and their predecessors, on A549 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. ns 
Indicates p ≥ 0.05 (non-significant).   
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5.1.4. MTT – 48H Exposure – Calu3 

 
Fig. 20 – MTT assays - % Cell Viability (% of contr ol) for 48H Exposure to several conjugates 

and their predecessors, on Calu3 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. * 
Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; **** Indicates p  ≤ 0.0001. 

 

Upon solubilization, the amount of formazan formed is determined through 

spectrophotometry. MTT reduction increases with metabolic activity; the amount of 

formazan is thus an indicator of cell viability (Houghton et al., 2007). In this sense, 

MTT assays provide additional information, besides that provided by other 

cytotoxicity assays. If a compound is proven to have cytostatic effect, MTT assays 

may inform if the cells are still viable, that is, if they are still able to proliferate when in 

non-adverse conditions. However, it should be mentioned that these MTT assay 

presents some disadvantages as well. For instance, it shows poor linearity at high 

cell densities and their end-point requires time-sensitive measurements. Besides, 

since it’s an assay dependent on mitochondrial activity, the results given are more 

prone to variability between different cell lines, thus requiring cell line-specific 

optimization (Houghton et al., 2007, Keepers et al., 1991, Pauwels et al., 2003). 
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As tested concentrations were different for the compounds to which cells were 

exposed, in the statistical analysis it was disposed as «Low», «Medium» and «High» 

concentrations so some comparison could be made.  

Evaluation of compounds cytotoxicity through MTT assays reveals no apparent 

toxicity to A549 and Calu3 cell lines, when exposed to 24 and 48H cycles, despite 

this further study should be taken to guarantee safety. 
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5.2. LDH assays 

 

LDH results turned out to be similar to those of MTT: evaluation of compounds 

cytotoxicity through LDH assays reveals no apparent toxicity to A549 and Calu3 cell 

lines, when exposed to 24 and 48H cycles.  

Metabolic activity/cell viability was expressed in percentual terms, as a fraction of the 

initial amount of cells (set as 100%), and the method was followed as described in 

the manufacturer guidelines (Sigma-Aldrich, 2014b) 

 

 

5.2.1. LDH – 24H Exposure – A549 

 
Fig. 21 - LDH assays - % Cell Viability (% of contr ol) for 24H Exposure to several conjugates, on 

A549 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. ns 
Indicates p ≥ 0.05 (non-significant). 
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5.2.2. LDH – 24H Exposure – Calu3 

 
Fig. 22 - LDH assays - % Cell Viability (% of contr ol) for 24H Exposure to several conjugates, on 

Calu3 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. * 
Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; **** Indicates p  ≤ 0.0001. 
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5.2.3. LDH – 48H Exposure – A549 

 
Fig. 23 - LDH assays - % Cell Viability (% of contr ol) for 48H Exposure to several conjugates 

and their predecessors, on A549 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. * 
Indicates p ≤ 0.05; ** Indicates p ≤ 0.01; *** Indicates p ≤ 0.001; **** Indicates p ≤ 0.0001. 
 

Statistical analysis reveals no significant difference in the percentage of viable cells 

after a 48 hours exposure to most of the compounds for the same cell line.  
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5.2.4. LDH – 48H Exposure – Calu3 

 
Fig. 24 - LDH assays - % Cell Viability (% of contr ol) for 48H Exposure to several conjugates 

and their predecessors, on Calu3 cells 

Cell viability was expressed as the ratio between the number of viable cells and the total amount of 
cells. Results are means ± SD from, at least, eight replicates. Statistical significance was accessed by 
One Way ANOVA with a Tukey’s multiple comparison post hoc test comparing results to control. ns 
Indicates p ≥ 0.05 (non-significant). 

 

 

Some LDH assays couldn’t be completed or even done at all seen the unavailability 

of LDH reagents; this was the case for 24H cycles of exposure to the majority of 

conjugates, CTX, LMWChi, and the last ones physical mixture. For 24H exposure 

only conjugates 1:1; 1:25 and 1:50 were tested since these were the ones with better 

results in the previous evaluated parameters. 

Clearly results obtained in the above LDH assays are far from satisfactory as some 

undisclosed interference occurred leading to some of statistic results, in fact results 

for 24H exposure to the test compounds shouldn’t be taken in consideration as, if 

there was time and materials, they would have been redone. 
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Conclusions 
 

Since Richard Nixon declared War on Cancer in 1971, the US National 

Cancer Institute has poured some $90 billion into research and treatments. Yet a 

cure remains elusive and some claim that Cancer will probably never be completely 

eradicated. Recent research raises a sobering possibility: that cancer may simply be 

here to stay. Researchers at Kiel University, the Catholic University of Croatia and 

other institutions discovered that hydra — tiny, coral-like polyps that emerged 

hundreds of millions of years ago — form tumors similar to those found in humans. 

These findings suggest that human cells ability to develop cancer is an intrinsic 

property that has evolved at least since then (Domazet-Loso et al.). 

All this means that cancer genes, plus the mechanisms that allow tumor cells to 

evade death and invade healthy tissue, “have deep evolutionary roots,” the 

researchers wrote.  

While human cells will probably always have the ability to “make mistakes” 

that trigger cancer, biotechnology will allow humanity to successfully treat and clean 

a patient completely and forever of cancer cells in a more or less earlier stage. 

In the future one cancer fighting strategy that’s already gaining expression will be to 

trigger the immune system potential against these cells. Cancer Immunotherapy 

have recently cemented its potential in patients and swayed even the skeptics.  

Another strategy is already in action and recurs to biotechnology to improve the 

action or transform already used drugs, into more efficient and with less side-effects 

ones. 

From this work we can conclude that the use of cetuximab-LMWChi 

conjugates as drivers to targeted siRNA therapies seems viable, even though further 

work must be done and some alternatives should be taken into consideration. 

FTIR analyses show us that the ideal cetuximab:LMWChi molecular ratio 

seems to be 1:25mol and 1:50mol, when using the zero length carbodiimide linker 

EDC/NHS for the conjugation procedure. These results are confirmed by the 

Bradford method for protein quantification as conjugates produced with a ratios of 

1:1, 1:25 and 1:50mol (CTX:LMWChi), have higher protein (CTX) content. 

 Despite the identification of a possible link between CTX and LMWChi - thus 

the formation of a conjugate - in the previously mentioned compounds, DLS analyses 
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revealed flocculation for conjugates 1:25 samples. Leaving only conjugate 1:50 and 

1:1 as the most successful compounds within the expected, this may raise the 

question if another more stable chitosan shouldn’t be studied as an alternative. 

Moving forward, conjugate 1:50 presented Z-average values far below the expected 

which doesn’t support the idea of a successful conjugation formation, leaving us with 

some doubts about this product, nevertheless this compound presented promising 

results from FTIR.  

Furthermore, and as expected from previous work, none of the intervenient 

compounds seems to be hazardous to A549 or Calu3 cell lines as MTT and LDH 

results seem to support, despite the fact that a too high cellular density might have 

been used. As previously mentioned some undisclosed interference occurred in the 

LDH assays leading to results unable to be interpreted, this probably as to do with 

the referred high cellular density used or perhaps, undetected contamination of cell 

cultures, plates or even reagents. With this said it’s highly advisable for future studies 

to be previously determined the Ideal cell densities by plotting calibration curves for 

each cell line. 

Taken together, these findings demonstrate that, when it comes to 

cetuximab:LMWChi conjugates, ratios of 1:1; and 1:50 are the most promising to be 

considered in future development of nanoparticles for encapsulate siRNA and 

targeting to EGFR overexpressing cells 

Such characteristics make these promising lead compounds for further studies. 
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Future perspectives 
 

The present work here described sets the ground for the prosecution to further 

studies, in order to test the possible application of the obtained conjugates into target 

nanoparticles to be developed. 

Referring to molecular ratios of cetuximab to LMW Chitosan a reasonable 

amount of ratios was already tested in this work even though, if another linker is 

chosen different ratios might be taken into consideration, as well as other Chitosans. 

Our best tool to characterize and identify the presence of the expected 

conjugate was FTIR, despite some purification of the final product recurring to 

ultrafiltration, HPLC with an appropriate column should be considered in future 

characterization studies. It would also be a plus to validate the referred HPLC 

method if this kind of separation method is meant to be considerate. 

Concerning protein/conjugate quantification methods it would be interesting to 

recur to a BCA protein assay kit in future studies, seen its sensibility, reliability and 

easy reproduction. 

Regarding cytotoxicity studies, cellular density should be reviewed prior new 

MTT and LDH assays, it was probably our main interference.  

Furthermore, electron microscopy could be useful to confirm the effect of 

conjugates/future developed nanoparticles on cells. 

Finally, in vivo assays should be pursued in future work within the research 

group, since it will also add valuable information about conjugates efficiency, safety 

and feasibility as to be used in future siRNA targeting therapies. 
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“History repeats, but science reverberates.”  

― Siddhartha Mukherjee, The Emperor of All Maladies 


